Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

Yeast cytochrome c oxidase: a model system to study mitochondrial forms of the haem-copper oxidase superfamily.

  • Amandine Maréchal‎ et al.
  • Biochimica et biophysica acta‎
  • 2012‎

The known subunits of yeast mitochondrial cytochrome c oxidase are reviewed. The structures of all eleven of its subunits are explored by building homology models based on the published structures of the homologous bovine subunits and similarities and differences are highlighted, particularly of the core functional subunit I. Yeast genetic techniques to enable introduction of mutations into the three core mitochondrially-encoded subunits are reviewed.


Gene Function Prediction from Functional Association Networks Using Kernel Partial Least Squares Regression.

  • Sonja Lehtinen‎ et al.
  • PloS one‎
  • 2015‎

With the growing availability of large-scale biological datasets, automated methods of extracting functionally meaningful information from this data are becoming increasingly important. Data relating to functional association between genes or proteins, such as co-expression or functional association, is often represented in terms of gene or protein networks. Several methods of predicting gene function from these networks have been proposed. However, evaluating the relative performance of these algorithms may not be trivial: concerns have been raised over biases in different benchmarking methods and datasets, particularly relating to non-independence of functional association data and test data. In this paper we propose a new network-based gene function prediction algorithm using a commute-time kernel and partial least squares regression (Compass). We compare Compass to GeneMANIA, a leading network-based prediction algorithm, using a number of different benchmarks, and find that Compass outperforms GeneMANIA on these benchmarks. We also explicitly explore problems associated with the non-independence of functional association data and test data. We find that a benchmark based on the Gene Ontology database, which, directly or indirectly, incorporates information from other databases, may considerably overestimate the performance of algorithms exploiting functional association data for prediction.


InterPro in 2019: improving coverage, classification and access to protein sequence annotations.

  • Alex L Mitchell‎ et al.
  • Nucleic acids research‎
  • 2019‎

The InterPro database (http://www.ebi.ac.uk/interpro/) classifies protein sequences into families and predicts the presence of functionally important domains and sites. Here, we report recent developments with InterPro (version 70.0) and its associated software, including an 18% growth in the size of the database in terms on new InterPro entries, updates to content, the inclusion of an additional entry type, refined modelling of discontinuous domains, and the development of a new programmatic interface and website. These developments extend and enrich the information provided by InterPro, and provide greater flexibility in terms of data access. We also show that InterPro's sequence coverage has kept pace with the growth of UniProtKB, and discuss how our evaluation of residue coverage may help guide future curation activities.


Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.

  • Tony E Lewis‎ et al.
  • Nucleic acids research‎
  • 2013‎

Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).


Structural and Functional View of Polypharmacology.

  • Aurelio Moya-García‎ et al.
  • Scientific reports‎
  • 2017‎

Protein domains mediate drug-protein interactions and this principle can guide the design of multi-target drugs i.e. polypharmacology. In this study, we associate multi-target drugs with CATH functional families through the overrepresentation of targets of those drugs in CATH functional families. Thus, we identify CATH functional families that are currently enriched in drugs (druggable CATH functional families) and we use the network properties of these druggable protein families to analyse their association with drug side effects. Analysis of selected druggable CATH functional families, enriched in drug targets, show that relatives exhibit highly conserved drug binding sites. Furthermore, relatives within druggable CATH functional families occupy central positions in a human protein functional network, cluster together forming network neighbourhoods and are less likely to be within proteins associated with drug side effects. Our results demonstrate that CATH functional families can be used to identify drug-target interactions, opening a new research direction in target identification.


PainNetworks: a web-based resource for the visualisation of pain-related genes in the context of their network associations.

  • James R Perkins‎ et al.
  • Pain‎
  • 2013‎

Hundreds of genes are proposed to contribute to nociception and pain perception. Historically, most studies of pain-related genes have examined them in isolation or alongside a handful of other genes. More recently the use of systems biology techniques has enabled us to study genes in the context of the biological pathways and networks in which they operate. Here we describe a Web-based resource, available at http://www.PainNetworks.org. It integrates interaction data from various public databases with information on known pain genes taken from several sources (eg, The Pain Genes Database) and allows the user to examine a gene (or set of genes) of interest alongside known interaction partners. This information is displayed by the resource in the form of a network. The user can enrich these networks by using data from pain-focused gene expression studies to highlight genes that change expression in a given experiment or pairs of genes showing correlated expression patterns across different experiments. Genes in the networks are annotated in several ways including biological function and drug binding. The Web site can be used to find out more about a gene of interest by looking at the function of its interaction partners. It can also be used to interpret the results of a functional genomics experiment by revealing putative novel pain-related genes that have similar expression patterns to known pain-related genes and by ranking genes according to their network connections with known pain genes. We expect this resource to grow over time and become a valuable asset to the pain community.


Axonal neuregulin 1 is a rate limiting but not essential factor for nerve remyelination.

  • Florence R Fricker‎ et al.
  • Brain : a journal of neurology‎
  • 2013‎

Neuregulin 1 acts as an axonal signal that regulates multiple aspects of Schwann cell development including the survival and migration of Schwann cell precursors, the ensheathment of axons and subsequent elaboration of the myelin sheath. To examine the role of this factor in remyelination and repair following nerve injury, we ablated neuregulin 1 in the adult nervous system using a tamoxifen inducible Cre recombinase transgenic mouse system. The loss of neuregulin 1 impaired remyelination after nerve crush, but did not affect Schwann cell proliferation associated with Wallerian degeneration or axon regeneration or the clearance of myelin debris by macrophages. Myelination changes were most marked at 10 days after injury but still apparent at 2 months post-crush. Transcriptional analysis demonstrated reduced expression of myelin-related genes during nerve repair in animals lacking neuregulin 1. We also studied repair over a prolonged time course in a more severe injury model, sciatic nerve transection and reanastamosis. In the neuregulin 1 mutant mice, remyelination was again impaired 2 months after nerve transection and reanastamosis. However, by 3 months post-injury axons lacking neuregulin 1 were effectively remyelinated and virtually indistinguishable from control. Neuregulin 1 signalling is therefore an important factor in nerve repair regulating the rate of remyelination and functional recovery at early phases following injury. In contrast to development, however, the determination of myelination fate following nerve injury is not dependent on axonal neuregulin 1 expression. In the early phase following injury, axonal neuregulin 1 therefore promotes nerve repair, but at late stages other signalling pathways appear to compensate.


A large-scale evaluation of computational protein function prediction.

  • Predrag Radivojac‎ et al.
  • Nature methods‎
  • 2013‎

Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Fifty-four methods representing the state of the art for protein function prediction were evaluated on a target set of 866 proteins from 11 organisms. Two findings stand out: (i) today's best protein function prediction algorithms substantially outperform widely used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is considerable need for improvement of currently available tools.


Assessment of protein domain fusions in human protein interaction networks prediction: application to the human kinetochore model.

  • Ian Morilla‎ et al.
  • New biotechnology‎
  • 2010‎

In order to understand how biological systems function it is necessary to determine the interactions and associations between proteins. Some proteins, involved in a common biological process and encoded by separate genes in one organism, can be found fused within a single protein chain in other organisms. By detecting these triplets, a functional relationship can be established between the unfused proteins. Here we use a domain fusion prediction method to predict these protein interactions for the human interactome. We observed that gene fusion events are more related to physical interaction between proteins than to other weaker functional relationships such as participation in a common biological pathway. These results suggest that domain fusion is an appropriate method for predicting protein complexes. The most reliable fused domain predictions were used to build protein-protein interaction (PPI) networks. These predicted PPI network models showed the same topological features as real biological networks and different features from random behaviour. We built the PPI domain fusion sub-network model of the human kinetochore and observed that the majority of the predicted interactions have not yet been experimentally characterised in the publicly available PPI repositories. The study of the human kinetochore domain fusion sub-network reveals undiscovered kinetochore proteins with presumably relevant functions, such as hubs with many connections in the kinetochore sub-network. These results suggest that experimentally hidden regions in the predicted PPI networks contain key functional elements, associated with important functional areas, still undiscovered in the human interactome. Until novel experiments shed light on these hidden regions; domain fusion predictions provide a valuable approach for exploring them.


Consensus clustering and functional interpretation of gene-expression data.

  • Stephen Swift‎ et al.
  • Genome biology‎
  • 2004‎

Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFkappaB and the unfolded protein response in certain B-cell lymphomas.


Unique signalling connectivity of FGFR3-TACC3 oncoprotein revealed by quantitative phosphoproteomics and differential network analysis.

  • Benedetta Lombardi‎ et al.
  • Oncotarget‎
  • 2017‎

The FGFR3-TACC3 fusion is an oncogenic driver in diverse malignancies, including bladder cancer, characterized by upregulated tyrosine kinase activity. To gain insights into distinct properties of FGFR3-TACC3 down-stream signalling, we utilised telomerase-immortalised normal human urothelial cell lines expressing either the fusion or wild-type FGFR3 (isoform IIIb) for subsequent quantitative proteomics and network analysis. Cellular lysates were chemically labelled with isobaric tandem mass tag reagents and, after phosphopeptide enrichment, liquid chromatography-high mass accuracy tandem mass spectrometry (LC-MS/MS) was used for peptide identification and quantification. Comparison of data from the two cell lines under non-stimulated and FGF1 stimulated conditions and of data representing physiological stimulation of FGFR3 identified about 200 regulated phosphosites. The identified phosphoproteins and quantified phosphosites were further analysed in the context of functional biological networks by inferring kinase-substrate interactions, mapping these to a comprehensive human signalling interaction network, filtering based on tissue-expression profiles and applying disease module detection and pathway enrichment methods. Analysis of our phosphoproteomics data using these bioinformatics methods combined into a new protocol-Disease Relevant Analysis of Genes On Networks (DRAGON)-allowed us to tease apart pathways differentially involved in FGFR3-TACC3 signalling in comparison to wild-type FGFR3 and to investigate their local phospho-signalling context. We highlight 9 pathways significantly regulated only in the cell line expressing FGFR3-TACC3 fusion and 5 pathways regulated only by stimulation of the wild-type FGFR3. Pathways differentially linked to FGFR3-TACC3 fusion include those related to chaperone activation and stress response and to regulation of TP53 expression and degradation that could contribute to development and maintenance of the cancer phenotype.


Dissecting peripheral protein-membrane interfaces.

  • Thibault Tubiana‎ et al.
  • PLoS computational biology‎
  • 2022‎

Peripheral membrane proteins (PMPs) include a wide variety of proteins that have in common to bind transiently to the chemically complex interfacial region of membranes through their interfacial binding site (IBS). In contrast to protein-protein or protein-DNA/RNA interfaces, peripheral protein-membrane interfaces are poorly characterized. We collected a dataset of PMP domains representative of the variety of PMP functions: membrane-targeting domains (Annexin, C1, C2, discoidin C2, PH, PX), enzymes (PLA, PLC/D) and lipid-transfer proteins (START). The dataset contains 1328 experimental structures and 1194 AphaFold models. We mapped the amino acid composition and structural patterns of the IBS of each protein in this dataset, and evaluated which were more likely to be found at the IBS compared to the rest of the domains' accessible surface. In agreement with earlier work we find that about two thirds of the PMPs in the dataset have protruding hydrophobes (Leu, Ile, Phe, Tyr, Trp and Met) at their IBS. The three aromatic amino acids Trp, Tyr and Phe are a hallmark of PMPs IBS regardless of whether they protrude on loops or not. This is also the case for lysines but not arginines suggesting that, unlike for Arg-rich membrane-active peptides, the less membrane-disruptive lysine is preferred in PMPs. Another striking observation was the over-representation of glycines at the IBS of PMPs compared to the rest of their surface, possibly procuring IBS loops a much-needed flexibility to insert in-between membrane lipids. The analysis of the 9 superfamilies revealed amino acid distribution patterns in agreement with their known functions and membrane-binding mechanisms. Besides revealing novel amino acids patterns at protein-membrane interfaces, our work contributes a new PMP dataset and an analysis pipeline that can be further built upon for future studies of PMPs properties, or for developing PMPs prediction tools using for example, machine learning approaches.


The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies.

  • Vaishali P Waman‎ et al.
  • Briefings in bioinformatics‎
  • 2021‎

SARS-CoV-2 is the causative agent of COVID-19, the ongoing global pandemic. It has posed a worldwide challenge to human health as no effective treatment is currently available to combat the disease. Its severity has led to unprecedented collaborative initiatives for therapeutic solutions against COVID-19. Studies resorting to structure-based drug design for COVID-19 are plethoric and show good promise. Structural biology provides key insights into 3D structures, critical residues/mutations in SARS-CoV-2 proteins, implicated in infectivity, molecular recognition and susceptibility to a broad range of host species. The detailed understanding of viral proteins and their complexes with host receptors and candidate epitope/lead compounds is the key to developing a structure-guided therapeutic design. Since the discovery of SARS-CoV-2, several structures of its proteins have been determined experimentally at an unprecedented speed and deposited in the Protein Data Bank. Further, specialized structural bioinformatics tools and resources have been developed for theoretical models, data on protein dynamics from computer simulations, impact of variants/mutations and molecular therapeutics. Here, we provide an overview of ongoing efforts on developing structural bioinformatics tools and resources for COVID-19 research. We also discuss the impact of these resources and structure-based studies, to understand various aspects of SARS-CoV-2 infection and therapeutic development. These include (i) understanding differences between SARS-CoV-2 and SARS-CoV, leading to increased infectivity of SARS-CoV-2, (ii) deciphering key residues in the SARS-CoV-2 involved in receptor-antibody recognition, (iii) analysis of variants in host proteins that affect host susceptibility to infection and (iv) analyses facilitating structure-based drug and vaccine design against SARS-CoV-2.


Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases.

  • David Lee‎ et al.
  • PLoS computational biology‎
  • 2016‎

Beta-lactamases represent the main bacterial mechanism of resistance to beta-lactam antibiotics and are a significant challenge to modern medicine. We have developed an automated classification and analysis protocol that exploits structure- and sequence-based approaches and which allows us to propose a grouping of serine beta-lactamases that more consistently captures and rationalizes the existing three classification schemes: Classes, (A, C and D, which vary in their implementation of the mechanism of action); Types (that largely reflect evolutionary distance measured by sequence similarity); and Variant groups (which largely correspond with the Bush-Jacoby clinical groups). Our analysis platform exploits a suite of in-house and public tools to identify Functional Determinants (FDs), i.e. residue sites, responsible for conferring different phenotypes between different classes, different types and different variants. We focused on Class A beta-lactamases, the most highly populated and clinically relevant class, to identify FDs implicated in the distinct phenotypes associated with different Class A Types and Variants. We show that our FunFHMMer method can separate the known beta-lactamase classes and identify those positions likely to be responsible for the different implementations of the mechanism of action in these enzymes. Two novel algorithms, ASSP and SSPA, allow detection of FD sites likely to contribute to the broadening of the substrate profiles. Using our approaches, we recognise 151 Class A types in UniProt. Finally, we used our beta-lactamase FunFams and ASSP profiles to detect 4 novel Class A types in microbiome samples. Our platforms have been validated by literature studies, in silico analysis and some targeted experimental verification. Although developed for the serine beta-lactamases they could be used to classify and analyse any diverse protein superfamily where sub-families have diverged over both long and short evolutionary timescales.


Progress towards mapping the universe of protein folds.

  • Alastair Grant‎ et al.
  • Genome biology‎
  • 2004‎

Although the precise aims differ between the various international structural genomics initiatives currently aiming to illuminate the universe of protein folds, many selectively target protein families for which the fold is unknown. How well can the current set of known protein families and folds be used to estimate the total number of folds in nature, and will structural genomics initiatives yield representatives for all the major protein families within a reasonable time scale?


PSI-2: structural genomics to cover protein domain family space.

  • Benoît H Dessailly‎ et al.
  • Structure (London, England : 1993)‎
  • 2009‎

One major objective of structural genomics efforts, including the NIH-funded Protein Structure Initiative (PSI), has been to increase the structural coverage of protein sequence space. Here, we present the target selection strategy used during the second phase of PSI (PSI-2). This strategy, jointly devised by the bioinformatics groups associated with the PSI-2 large-scale production centers, targets representatives from large, structurally uncharacterized protein domain families, and from structurally uncharacterized subfamilies in very large and diverse families with incomplete structural coverage. These very large families are extremely diverse both structurally and functionally, and are highly overrepresented in known proteomes. On the basis of several metrics, we then discuss to what extent PSI-2, during its first 3 years, has increased the structural coverage of genomes, and contributed structural and functional novelty. Together, the results presented here suggest that PSI-2 is successfully meeting its objectives and provides useful insights into structural and functional space.


A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat.

  • James R Perkins‎ et al.
  • Molecular pain‎
  • 2014‎

The past decade has seen an abundance of transcriptional profiling studies of preclinical models of persistent pain, predominantly employing microarray technology. In this study we directly compare exon microarrays to RNA-seq and investigate the ability of both platforms to detect differentially expressed genes following nerve injury using the L5 spinal nerve transection model of neuropathic pain. We also investigate the effects of increasing RNA-seq sequencing depth. Finally we take advantage of the "agnostic" approach of RNA-seq to discover areas of expression outside of annotated exons that show marked changes in expression following nerve injury.


Evolutionary history of the TBP-domain superfamily.

  • Björn Brindefalk‎ et al.
  • Nucleic acids research‎
  • 2013‎

The TATA binding protein (TBP) is an essential transcription initiation factor in Archaea and Eucarya. Bacteria lack TBP, and instead use sigma factors for transcription initiation. TBP has a symmetric structure comprising two repeated TBP domains. Using sequence, structural and phylogenetic analyses, we examine the distribution and evolutionary history of the TBP domain, a member of the helix-grip fold family. Our analyses reveal a broader distribution than for TBP, with TBP-domains being present across all three domains of life. In contrast to TBP, all other characterized examples of the TBP domain are present as single copies, primarily within multidomain proteins. The presence of the TBP domain in the ubiquitous DNA glycosylases suggests that this fold traces back to the ancestor of all three domains of life. The TBP domain is also found in RNase HIII, and phylogenetic analyses show that RNase HIII has evolved from bacterial RNase HII via TBP-domain fusion. Finally, our comparative genomic screens confirm and extend earlier reports of proteins consisting of a single TBP domain among some Archaea. These monopartite TBP-domain proteins suggest that this domain is functional in its own right, and that the TBP domain could have first evolved as an independent protein, which was later recruited in different contexts.


FunFam protein families improve residue level molecular function prediction.

  • Linus Scheibenreif‎ et al.
  • BMC bioinformatics‎
  • 2019‎

The CATH database provides a hierarchical classification of protein domain structures including a sub-classification of superfamilies into functional families (FunFams). We analyzed the similarity of binding site annotations in these FunFams and incorporated FunFams into the prediction of protein binding residues.


Characterizing and explaining the impact of disease-associated mutations in proteins without known structures or structural homologs.

  • Neeladri Sen‎ et al.
  • Briefings in bioinformatics‎
  • 2022‎

Mutations in human proteins lead to diseases. The structure of these proteins can help understand the mechanism of such diseases and develop therapeutics against them. With improved deep learning techniques, such as RoseTTAFold and AlphaFold, we can predict the structure of proteins even in the absence of structural homologs. We modeled and extracted the domains from 553 disease-associated human proteins without known protein structures or close homologs in the Protein Databank. We noticed that the model quality was higher and the Root mean square deviation (RMSD) lower between AlphaFold and RoseTTAFold models for domains that could be assigned to CATH families as compared to those which could only be assigned to Pfam families of unknown structure or could not be assigned to either. We predicted ligand-binding sites, protein-protein interfaces and conserved residues in these predicted structures. We then explored whether the disease-associated missense mutations were in the proximity of these predicted functional sites, whether they destabilized the protein structure based on ddG calculations or whether they were predicted to be pathogenic. We could explain 80% of these disease-associated mutations based on proximity to functional sites, structural destabilization or pathogenicity. When compared to polymorphisms, a larger percentage of disease-associated missense mutations were buried, closer to predicted functional sites, predicted as destabilizing and pathogenic. Usage of models from the two state-of-the-art techniques provide better confidence in our predictions, and we explain 93 additional mutations based on RoseTTAFold models which could not be explained based solely on AlphaFold models.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: