Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Post-transcriptional Regulation of De Novo Lipogenesis by mTORC1-S6K1-SRPK2 Signaling.

  • Gina Lee‎ et al.
  • Cell‎
  • 2017‎

mTORC1 is a signal integrator and master regulator of cellular anabolic processes linked to cell growth and survival. Here, we demonstrate that mTORC1 promotes lipid biogenesis via SRPK2, a key regulator of RNA-binding SR proteins. mTORC1-activated S6K1 phosphorylates SRPK2 at Ser494, which primes Ser497 phosphorylation by CK1. These phosphorylation events promote SRPK2 nuclear translocation and phosphorylation of SR proteins. Genome-wide transcriptome analysis reveals that lipid biosynthetic enzymes are among the downstream targets of mTORC1-SRPK2 signaling. Mechanistically, SRPK2 promotes SR protein binding to U1-70K to induce splicing of lipogenic pre-mRNAs. Inhibition of this signaling pathway leads to intron retention of lipogenic genes, which triggers nonsense-mediated mRNA decay. Genetic or pharmacological inhibition of SRPK2 blunts de novo lipid synthesis, thereby suppressing cell growth. These results thus reveal a novel role of mTORC1-SRPK2 signaling in post-transcriptional regulation of lipid metabolism and demonstrate that SRPK2 is a potential therapeutic target for mTORC1-driven metabolic disorders.


Estradiol and mTORC2 cooperate to enhance prostaglandin biosynthesis and tumorigenesis in TSC2-deficient LAM cells.

  • Chenggang Li‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

Lymphangioleiomyomatosis (LAM) is a progressive neoplastic disorder that leads to lung destruction and respiratory failure primarily in women. LAM is typically caused by tuberous sclerosis complex 2 (TSC2) mutations resulting in mTORC1 activation in proliferative smooth muscle-like cells in the lung. The female predominance of LAM suggests that estradiol contributes to disease development. Metabolomic profiling identified an estradiol-enhanced prostaglandin biosynthesis signature in Tsc2-deficient (TSC(-)) cells, both in vitro and in vivo. Estradiol increased the expression of cyclooxygenase-2 (COX-2), a rate-limiting enzyme in prostaglandin biosynthesis, which was also increased at baseline in TSC-deficient cells and was not affected by rapamycin treatment. However, both Torin 1 treatment and Rictor knockdown led to reduced COX-2 expression and phospho-Akt-S473. Prostaglandin production was also increased in TSC-deficient cells. In preclinical models, both Celecoxib and aspirin reduced tumor development. LAM patients had significantly higher serum prostaglandin levels than healthy women. 15-epi-lipoxin-A4 was identified in exhaled breath condensate from LAM subjects and was increased by aspirin treatment, indicative of functional COX-2 expression in the LAM airway. In vitro, 15-epi-lipoxin-A4 reduced the proliferation of LAM patient-derived cells in a dose-dependent manner. Targeting COX-2 and prostaglandin pathways may have therapeutic value in LAM and TSC-related diseases, and possibly in other conditions associated with mTOR hyperactivation.


Estrogen activates pyruvate kinase M2 and increases the growth of TSC2-deficient cells.

  • Yiyang Lu‎ et al.
  • PloS one‎
  • 2020‎

Lymphangioleiomyomatosis (LAM) is a devastating lung disease caused by inactivating gene mutations in either TSC1 or TSC2 that result in hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1). As LAM occurs predominantly in women during their reproductive age and is exacerbated by pregnancy, the female hormonal environment, and in particular estrogen, is implicated in LAM pathogenesis and progression. However, detailed underlying molecular mechanisms are not well understood. In this study, utilizing human pulmonary LAM specimens and cell culture models of TSC2-deficient LAM patient-derived and rat uterine leiomyoma-derived cells, we tested the hypothesis that estrogen promotes the growth of mTORC1-hyperactive cells through pyruvate kinase M2 (PKM2). Estrogen increased the phosphorylation of PKM2 at Ser37 and induced the nuclear translocation of phospho-PKM2. The estrogen receptor antagonist Faslodex reversed these effects. Restoration of TSC2 inhibited the phosphorylation of PKM2 in an mTORC1 inhibitor-insensitive manner. Finally, accumulation of phosphorylated PKM2 was evident in pulmonary nodule from LAM patients. Together, our data suggest that female predominance of LAM might be at least in part attributed to estrogen stimulation of PKM2-mediated cellular metabolic alterations. Targeting metabolic regulators of PKM2 might have therapeutic benefits for women with LAM and other female-specific neoplasms.


Folliculin regulates cell-cell adhesion, AMPK, and mTORC1 in a cell-type-specific manner in lung-derived cells.

  • Damir Khabibullin‎ et al.
  • Physiological reports‎
  • 2014‎

Germline loss-of-function BHD mutations cause cystic lung disease and hereditary pneumothorax, yet little is known about the impact of BHD mutations in the lung. Folliculin (FLCN), the product of the Birt-Hogg-Dube (BHD) gene, has been linked to altered cell-cell adhesion and to the AMPK and mTORC1 signaling pathways. We found that downregulation of FLCN in human bronchial epithelial (HBE) cells decreased the phosphorylation of ACC, a marker of AMPK activation, while downregulation of FLCN in small airway epithelial (SAEC) cells increased the activity of phospho-S6, a marker of mTORC1 activation, highlighting the cell type-dependent functions of FLCN. Cell-cell adhesion forces were significantly increased in FLCN-deficient HBE cells, consistent with prior findings in FLCN-deficient human kidney-derived cells. To determine how these altered cell-cell adhesion forces impact the lung, we exposed mice with heterozygous inactivation of Bhd (similarly to humans with germline inactivation of one BHD allele) to mechanical ventilation at high tidal volumes. Bhd(+/-) mice exhibited a trend (P = 0.08) toward increased elastance after 6 h of ventilation at 24 cc/kg. Our results indicate that FLCN regulates the AMPK and mTORC1 pathways and cell-cell adhesion in a cell type-dependent manner. FLCN deficiency may impact the physiologic response to inflation-induced mechanical stress, but further investigation is required. We hypothesize that FLCN-dependent effects on signaling and cellular adhesion contribute to the pathogenesis of cystic lung disease in BHD patients.


Rapamycin-insensitive up-regulation of adipocyte phospholipase A2 in tuberous sclerosis and lymphangioleiomyomatosis.

  • Chenggang Li‎ et al.
  • PloS one‎
  • 2014‎

Tuberous sclerosis syndrome (TSC) is an autosomal dominant tumor suppressor gene syndrome affecting multiple organs, including renal angiomyolipomas and pulmonary lymphangioleiomyomatosis (LAM). LAM is a female-predominant interstitial lung disease characterized by the progressive cyst formation and respiratory failure, which is also seen in sporadic patients without TSC. Mutations in TSC1 or TSC2 cause TSC, result in hyperactivation of mammalian target of rapamycin (mTOR), and are also seen in LAM cells in sporadic LAM. We recently reported that prostaglandin biosynthesis and cyclooxygenase-2 were deregulated in TSC and LAM. Phospholipase A2 (PLA2) is the rate-limiting enzyme that catalyzes the conversion of plasma membrane phospholipids into prostaglandins. In this study, we identified upregulation of adipocyte AdPLA2 (PLA2G16) in LAM nodule cells using publicly available expression data. We showed that the levels of AdPLA2 transcript and protein were higher in LAM lungs compared with control lungs. We then showed that TSC2 negatively regulates the expression of AdPLA2, and loss of TSC2 is associated with elevated production of prostaglandin E2 (PGE2) and prostacyclin (PGI2) in cell culture models. Mouse model studies also showed increased expression of AdPLA2 in xenograft tumors, estrogen-induced lung metastatic lesions of Tsc2 null leiomyoma-derived cells, and spontaneous renal cystadenomas from Tsc2+/- mice. Importantly, rapamycin treatment did not affect the expression of AdPLA2 and the production of PGE2 by TSC2-deficient mouse embryonic fibroblast (Tsc2-/-MEFs), rat uterine leiomyoma-derived ELT3 cells, and LAM patient-associated renal angiomyolipoma-derived "mesenchymal" cells. Furthermore, methyl arachidonyl fluorophosphate (MAFP), a potent irreversible PLA2 inhibitor, selectively suppressed the growth and induced apoptosis of TSC2-deficient LAM patient-derived cells relative to TSC2-addback cells. Our findings suggest that AdPLA2 plays an important role in promoting tumorigenesis and disease progression by modulating the production of prostaglandins and may serve as a potential therapeutic target in TSC and LAM.


Insulin growth factor binding protein 2 mediates the progression of lymphangioleiomyomatosis.

  • Xiangke Li‎ et al.
  • Oncotarget‎
  • 2017‎

Lymphangioleiomyomatosis (LAM) is a progressive pulmonary disease that almost exclusively affects women. LAM cells migrate to the lungs, where they cause cystic destruction of lung parenchyma. Mutations in TSC1 or TSC2 lead to the activation of the mammalian target of rapamycin complex-1, a kinase that regulates growth factor-dependent protein translation, cell growth, and metabolism. Insulin-like growth factor binding protein 2 (IGFBP2) binds insulin, IGF1 and IGF2 in circulation, thereby modulating cell survival, migration, and invasion in neoplasms. In this study, we identified that IGFBP2 primarily localized in the nucleus of TSC2-null LAM patient-derived cells in vitro and in vivo. We also showed that nuclear accumulation of IGFBP2 is closely associated with estrogen receptor alpha (ERa) expression. Furthermore, estrogen treatment induced IGFBP2 nuclear translocation in TSC2-null LAM patient-derived cells. Importantly, depletion of IGFBP2 by siRNA reduced cell proliferation, enhanced apoptosis, and decreased migration and invasion of TSC2-null LAM patient-derived cells. More interestingly, depletion of IGFBP2 markedly decreased the phosphorylation of MAPK in LAM patient-derived TSC2-null cells. Collectively, these results suggest that IGFBP2 plays an important role in promoting tumorigenesis, through estrogen and ERalpha signaling pathway. Thus, targeting IGFBP2 may serve as a potential therapeutic strategy for women with LAM and other female gender specific neoplasms.


Kidney intercalated cells and the transcription factor FOXi1 drive cystogenesis in tuberous sclerosis complex.

  • Sharon Barone‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Tuberous sclerosis complex (TSC) is caused by mutations in either TSC1 or TSC2 genes and affects multiple organs, including kidney, lung, and brain. In the kidney, TSC presents with the enlargement of benign tumors (angiomyolipomata) and cysts, which eventually leads to kidney failure. The factors promoting cyst formation and tumor growth in TSC are incompletely understood. Here, we report that mice with principal cell-specific inactivation of Tsc1 develop numerous cortical cysts, which are overwhelmingly composed of hyperproliferating A-intercalated (A-IC) cells. RNA sequencing and confirmatory expression studies demonstrated robust expression of Forkhead Transcription Factor 1 (Foxi1) and its downstream targets, apical H+-ATPase and cytoplasmic carbonic anhydrase 2 (CAII), in cyst epithelia in Tsc1 knockout (KO) mice but not in Pkd1 mutant mice. In addition, the electrogenic 2Cl-/H+ exchanger (CLC-5) is significantly up-regulated and shows remarkable colocalization with H+-ATPase on the apical membrane of cyst epithelia in Tsc1 KO mice. Deletion of Foxi1, which is vital to intercalated cells viability and H+-ATPase expression, completely abrogated the cyst burden in Tsc1 KO mice, as indicated by MRI images and histological analysis in kidneys of Foxi1/Tsc1 double-knockout (dKO) mice. Deletion of CAII, which is critical to H+-ATPase activation, caused significant reduction in cyst burden and increased life expectancy in CAII/Tsc1 dKO mice vs. Tsc1 KO mice. We propose that intercalated cells and their acid/base/electrolyte transport machinery (H+-ATPase/CAII/CLC-5) are critical to cystogenesis, and their inhibition or inactivation is associated with significant protection against cyst generation and/or enlargement in TSC.


Integrating social determinants of health principles into the preclinical medical curriculum via student-led pedagogical modalities.

  • Krisandra Kneer‎ et al.
  • BMC medical education‎
  • 2023‎

Dismantling structural inequities in health care requires that physicians understand the impacts of social determinants of health (SDH). Although many medical schools incorporate SDH education, integration of these principles into the preclinical curriculum remains challenging.


Small-molecule inhibition of prostaglandin E receptor 2 impairs cyclooxygenase-associated malignant glioma growth.

  • Jiange Qiu‎ et al.
  • British journal of pharmacology‎
  • 2019‎

An up-regulation of COX-2 in malignant gliomas causes excessive synthesis of PGE2 , which is thought to facilitate brain tumour growth and invasion. However, which downstream PGE2 receptor subtype (i.e., EP1 -EP4 ) directly contributes to COX activity-promoted glioma growth remains largely unknown.


Insights into pulmonary phosphate homeostasis and osteoclastogenesis emerge from the study of pulmonary alveolar microlithiasis.

  • Yasuaki Uehara‎ et al.
  • Nature communications‎
  • 2023‎

Pulmonary alveolar microlithiasis is an autosomal recessive lung disease caused by a deficiency in the pulmonary epithelial Npt2b sodium-phosphate co-transporter that results in accumulation of phosphate and formation of hydroxyapatite microliths in the alveolar space. The single cell transcriptomic analysis of a pulmonary alveolar microlithiasis lung explant showing a robust osteoclast gene signature in alveolar monocytes and the finding that calcium phosphate microliths contain a rich protein and lipid matrix that includes bone resorbing osteoclast enzymes and other proteins suggested a role for osteoclast-like cells in the host response to microliths. While investigating the mechanisms of microlith clearance, we found that Npt2b modulates pulmonary phosphate homeostasis through effects on alternative phosphate transporter activity and alveolar osteoprotegerin, and that microliths induce osteoclast formation and activation in a receptor activator of nuclear factor-κB ligand and dietary phosphate dependent manner. This work reveals that Npt2b and pulmonary osteoclast-like cells play key roles in pulmonary homeostasis and suggest potential new therapeutic targets for the treatment of lung disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: