Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 29 papers

DNA copy number evolution in Drosophila cell lines.

  • Hangnoh Lee‎ et al.
  • Genome biology‎
  • 2014‎

Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles.


Resveratrol enhances neovascularization in the infarcted rat myocardium through the induction of thioredoxin-1, heme oxygenase-1 and vascular endothelial growth factor.

  • Shigeaki Kaga‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2005‎

We have previously shown that resveratrol possesses cardioprotective effect, which may be attributed to its ability to (i) stimulate nitric oxide production and (ii) free radical scavenging activity. Since resveratrol is one of the major components of certain varieties of red grapes, these events may underlie the cardioprotective effects thought to be obtained from moderate red wine consumption. Here we report resveratrol enhanced myocardial angiogenesis both in vivo and in vitro by induction of vascular endothelial growth factor (VEGF), which was regulated by thioredoxin-1 (Trx-1) and heme oxygenase-1 (HO-1). Human coronary arteriolar endothelial cells exposed to resveratrol or Trx-1 on Matrigel demonstrated significantly accelerated tubular morphogenesis with induction of HO-1 and VEGF expression. This angiogenic response was repressed by tin-protoporphyrin IX (SnPP), an HO-1 inhibitor, along with downregulation of VEGF expression. However Trx-1 expression was not affected by SnPP. Again, rat neonatal cardiomyocytes treated with resveratrol significantly expressed Trx-1, HO-1 as well as VEGF. Rats were orally administered with resveratrol (1 mg/kg per day) for 14 days and then underwent permanent left anterior descending coronary artery (LAD) occlusion to document similar pro-angiogenic effect. Our results demonstrated that pretreatment with resveratrol markedly reduced infarct size 24 h after myocardial infarction (MI) and increased capillary density in the peri-infarct myocardium along with better left ventricular function 4 days after MI compared with vehicle-treated control. Concomitantly, resveratrol-treated myocardium after MI significantly induced Trx-1, HO-1 and VEGF expression. This effect was blocked by SnPP. Our findings suggest that resveratrol mediates cardioprotection and neovascularization through Trx-1-HO-1-VEGF pathway in rat ischemic myocardium.


Antibody-array technique reveals overexpression of important DNA-repair proteins during cardiac ischemic preconditioning.

  • Praveer Mathur‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2005‎

It is well known that repetitive ischemia followed by reperfusion (four cycles of 5 min of ischemia and 10 min of reperfusion) demonstrates protective effect against subsequent severe ischemic insult, known as ischemic preconditioning (PC). This phenomenon causes reduction in oxidative DNA damage, infarct size, and the extent of apoptotic cell death, leading to adaptation on functional recovery. The involvement of DNA-repair mechanisms in PC has not been well studied. We utilized the antibody-array technique to identify DNA-repair proteins that were upregulated by ischemic PC in the permanent left anterior coronary artery occlusion myocardial infarction (MI) model. The antibody-array system enabled us to identify three double-strand-break-repair proteins--Rad50, DNA topoisomerase I, Ku80--that were upregulated and might be involved in cell-survival processes during adaptation. With Western blot analysis, we found no significant difference in Ku80 protein expression between preconditioned and control groups after MI. Therefore, this report focuses on the overexpression of Rad50 and DNA topoisomerase and proposes that the DNA-repair mechanism in the permanent left anterior descending coronary artery (LAD) occlusion model involves these two proteins.


VEGFR1 (Flt-1+/-) gene knockout leads to the disruption of VEGF-mediated signaling through the nitric oxide/heme oxygenase pathway in ischemic preconditioned myocardium.

  • Mahesh Thirunavukkarasu‎ et al.
  • Free radical biology & medicine‎
  • 2007‎

This report demonstrates that mice deficient in Flt-1 failed to establish ischemic preconditioning (PC)-mediated cardioprotection in isolated working buffer-perfused ischemic/reperfused (I/R) hearts compared to wild type (WT) subjected to the same PC protocol. WT and Flt-1+/- mice were divided into four groups: (1) WT I/R, (2) WT + PC, (3) Flt-1+/- I/R, and (4) Flt-1+/- + PC. Group 1 and 3 mice were subjected to 30 min of ischemia followed by 2 h of reperfusion and group 2 and 4 mice were subjected to four episodes of 4-min global ischemia followed by 6 min of reperfusion before ischemia/reperfusion. For both wild-type and Flt-1+/- mice, the postischemic functional recovery for the hearts was lower than the baseline, but the recovery for the knockout mice was less compared to the WT mice even in preconditioning. The myocardial infarction and apoptosis were higher in Flt-1+/- compared to wild-type I/R. Flt-1+/- KO mice demonstrated pronounced inhibition of the expression of iNOS, p-AKT & p-eNOS. Significant inhibition of STAT3 & CREB were also observed along with the inhibition of HO-1 mRNA. Results demonstrate that Flt-1+/- mouse hearts are more susceptible to ischemia/reperfusion injury and also document that preconditioning is not as effective as found in WT and therefore suggest the importance of VEGF/Flt-1 signaling in ischemic/reperfused myocardium.


Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function.

  • Eric Lécuyer‎ et al.
  • Cell‎
  • 2007‎

Although subcellular mRNA trafficking has been demonstrated as a mechanism to control protein distribution, it is generally believed that most protein localization occurs subsequent to translation. To address this point, we developed and employed a high-resolution fluorescent in situ hybridization procedure to comprehensively evaluate mRNA localization dynamics during early Drosophila embryogenesis. Surprisingly, of the 3370 genes analyzed, 71% of those expressed encode subcellularly localized mRNAs. Dozens of new and striking localization patterns were observed, implying an equivalent variety of localization mechanisms. Tight correlations between mRNA distribution and subsequent protein localization and function, indicate major roles for mRNA localization in nucleating localized cellular machineries. A searchable web resource documenting mRNA expression and localization dynamics has been established and will serve as an invaluable tool for dissecting localization mechanisms and for predicting gene functions and interactions.


Pervasive Chromatin-RNA Binding Protein Interactions Enable RNA-Based Regulation of Transcription.

  • Rui Xiao‎ et al.
  • Cell‎
  • 2019‎

Increasing evidence suggests that transcriptional control and chromatin activities at large involve regulatory RNAs, which likely enlist specific RNA-binding proteins (RBPs). Although multiple RBPs have been implicated in transcription control, it has remained unclear how extensively RBPs directly act on chromatin. We embarked on a large-scale RBP ChIP-seq analysis, revealing widespread RBP presence in active chromatin regions in the human genome. Like transcription factors (TFs), RBPs also show strong preference for hotspots in the genome, particularly gene promoters, where their association is frequently linked to transcriptional output. Unsupervised clustering reveals extensive co-association between TFs and RBPs, as exemplified by YY1, a known RNA-dependent TF, and RBM25, an RBP involved in splicing regulation. Remarkably, RBM25 depletion attenuates all YY1-dependent activities, including chromatin binding, DNA looping, and transcription. We propose that various RBPs may enhance network interaction through harnessing regulatory RNAs to control transcription.


Context-Dependent and Disease-Specific Diversity in Protein Interactions within Stress Granules.

  • Sebastian Markmiller‎ et al.
  • Cell‎
  • 2018‎

Stress granules (SGs) are transient ribonucleoprotein (RNP) aggregates that form during cellular stress and are increasingly implicated in human neurodegeneration. To study the proteome and compositional diversity of SGs in different cell types and in the context of neurodegeneration-linked mutations, we used ascorbate peroxidase (APEX) proximity labeling, mass spectrometry, and immunofluorescence to identify ∼150 previously unknown human SG components. A highly integrated, pre-existing SG protein interaction network in unstressed cells facilitates rapid coalescence into larger SGs. Approximately 20% of SG diversity is stress or cell-type dependent, with neuronal SGs displaying a particularly complex repertoire of proteins enriched in chaperones and autophagy factors. Strengthening the link between SGs and neurodegeneration, we demonstrate aberrant dynamics, composition, and subcellular distribution of SGs in cells from amyotrophic lateral sclerosis (ALS) patients. Using three Drosophila ALS/FTD models, we identify SG-associated modifiers of neurotoxicity in vivo. Altogether, our results highlight SG proteins as central to understanding and ultimately targeting neurodegeneration.


Data for the generation of RNA spatiotemporal distributions and interpretation of Chk1 and SLBP protein depletion phenotypes during Drosophila embryogenesis.

  • Fabio Alexis Lefebvre‎ et al.
  • Data in brief‎
  • 2017‎

The data presented in this article is related to the research article entitled "Biochemical Fractionation of Time-Resolved Drosophila Embryos Reveals Similar Transcriptomic Alterations in Replication Checkpoint and Histone mRNA Processing Mutants" (Lefebvre et al., 2017) [1]. This article provides a spatiotemporal transcriptomic analysis of early embryogenesis and shows that mutations in the checkpoint factor grapes/Chk1 and the histone mRNA processing factor SLBP selectively impair zygotic gene expression. Here, lists of transcripts enriched in early syncytial embryos, late blastoderm embryos, cytoplasmic and nuclear extracts of blastoderm embryos are made public, along with transcription factor motif occurrence for genes enriched in each context. In addition, extensive lists of genes down-regulated upon Chk1 and SLBP protein depletion in embryos are released to enable further analyses.


Biochemical Fractionation of Time-Resolved Drosophila Embryos Reveals Similar Transcriptomic Alterations in Replication Checkpoint and Histone mRNA Processing Mutants.

  • Fabio Alexis Lefebvre‎ et al.
  • Journal of molecular biology‎
  • 2017‎

In higher eukaryotes, maternally provided gene products drive the initial stages of embryogenesis until the zygotic transcriptional program takes over, a developmental process called the midblastula transition (MBT). In addition to zygotic genome activation, the MBT involves alterations in cell-cycle length and the implementation of DNA damage/replication checkpoints that serve to monitor genome integrity. Previous work has shown that mutations affecting histone mRNA metabolism or DNA replication checkpoint factors severely impact developmental progression through the MBT, prompting us to characterize and contrast the transcriptomic impact of these genetic perturbations. In this study, we define gene expression profiles that mark early embryogenesis in Drosophila through transcriptomic analyses of developmentally staged (early syncytial versus late blastoderm) and biochemically fractionated (nuclear versus cytoplasmic) wild-type (wt) embryos. We then compare the transcriptomic profiles of loss-of-function mutants of the Chk1/Grapes replication checkpoint kinase and the stem loop binding protein (SLBP), a key regulator of replication-dependent histone mRNAs. Our analysis of RNA spatial and temporal distribution during embryogenesis offers new insights into the dynamics of early embryogenesis. In addition, we find that grp and Slbp mutant embryos display profound and highly similar defects in gene expression, most strikingly in zygotic gene expression, compromising the transition from a maternal to a zygotic regulation of development.


Expanded encyclopaedias of DNA elements in the human and mouse genomes.

  • ENCODE Project Consortium‎ et al.
  • Nature‎
  • 2020‎

The human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.


RBP Image Database: A resource for the systematic characterization of the subcellular distribution properties of human RNA binding proteins.

  • Louis Philip Benoit Bouvrette‎ et al.
  • Nucleic acids research‎
  • 2023‎

RNA binding proteins (RBPs) are central regulators of gene expression implicated in all facets of RNA metabolism. As such, they play key roles in cellular physiology and disease etiology. Since different steps of post-transcriptional gene expression tend to occur in specific regions of the cell, including nuclear or cytoplasmic locations, defining the subcellular distribution properties of RBPs is an important step in assessing their potential functions. Here, we present the RBP Image Database, a resource that details the subcellular localization features of 301 RBPs in the human HepG2 and HeLa cell lines, based on the results of systematic immuno-fluorescence studies conducted using a highly validated collection of RBP antibodies and a panel of 12 markers for specific organelles and subcellular structures. The unique features of the RBP Image Database include: (i) hosting of comprehensive representative images for each RBP-marker pair, with ∼250,000 microscopy images; (ii) a manually curated controlled vocabulary of annotation terms detailing the localization features of each factor; and (iii) a user-friendly interface allowing the rapid querying of the data by target or annotation. The RBP Image Database is freely available at https://rnabiology.ircm.qc.ca/RBPImage/.


Resources for the Comprehensive Discovery of Functional RNA Elements.

  • Balaji Sundararaman‎ et al.
  • Molecular cell‎
  • 2016‎

Transcriptome-wide maps of RNA binding protein (RBP)-RNA interactions by immunoprecipitation (IP)-based methods such as RNA IP (RIP) and crosslinking and IP (CLIP) are key starting points for evaluating the molecular roles of the thousands of human RBPs. A significant bottleneck to the application of these methods in diverse cell lines, tissues, and developmental stages is the availability of validated IP-quality antibodies. Using IP followed by immunoblot assays, we have developed a validated repository of 438 commercially available antibodies that interrogate 365 unique RBPs. In parallel, 362 short-hairpin RNA (shRNA) constructs against 276 unique RBPs were also used to confirm specificity of these antibodies. These antibodies can characterize subcellular RBP localization. With the burgeoning interest in the roles of RBPs in cancer, neurobiology, and development, these resources are invaluable to the broad scientific community. Detailed information about these resources is publicly available at the ENCODE portal (https://www.encodeproject.org/).


A benchmark for RNA-seq quantification pipelines.

  • Mingxiang Teng‎ et al.
  • Genome biology‎
  • 2016‎

Obtaining RNA-seq measurements involves a complex data analytical process with a large number of competing algorithms as options. There is much debate about which of these methods provides the best approach. Unfortunately, it is currently difficult to evaluate their performance due in part to a lack of sensitive assessment metrics. We present a series of statistical summaries and plots to evaluate the performance in terms of specificity and sensitivity, available as a R/Bioconductor package ( http://bioconductor.org/packages/rnaseqcomp ). Using two independent datasets, we assessed seven competing pipelines. Performance was generally poor, with two methods clearly underperforming and RSEM slightly outperforming the rest.


Regulation of RNA editing by RNA-binding proteins in human cells.

  • Giovanni Quinones-Valdez‎ et al.
  • Communications biology‎
  • 2019‎

Adenosine-to-inosine (A-to-I) editing, mediated by the ADAR enzymes, diversifies the transcriptome by altering RNA sequences. Recent studies reported global changes in RNA editing in disease and development. Such widespread editing variations necessitate an improved understanding of the regulatory mechanisms of RNA editing. Here, we study the roles of >200 RNA-binding proteins (RBPs) in mediating RNA editing in two human cell lines. Using RNA-sequencing and global protein-RNA binding data, we identify a number of RBPs as key regulators of A-to-I editing. These RBPs, such as TDP-43, DROSHA, NF45/90 and Ro60, mediate editing through various mechanisms including regulation of ADAR1 expression, interaction with ADAR1, and binding to Alu elements. We highlight that editing regulation by Ro60 is consistent with the global up-regulation of RNA editing in systemic lupus erythematosus. Additionally, most key editing regulators act in a cell type-specific manner. Together, our work provides insights for the regulatory mechanisms of RNA editing.


A large-scale binding and functional map of human RNA-binding proteins.

  • Eric L Van Nostrand‎ et al.
  • Nature‎
  • 2020‎

Many proteins regulate the expression of genes by binding to specific regions encoded in the genome1. Here we introduce a new data set of RNA elements in the human genome that are recognized by RNA-binding proteins (RBPs), generated as part of the Encyclopedia of DNA Elements (ENCODE) project phase III. This class of regulatory elements functions only when transcribed into RNA, as they serve as the binding sites for RBPs that control post-transcriptional processes such as splicing, cleavage and polyadenylation, and the editing, localization, stability and translation of mRNAs. We describe the mapping and characterization of RNA elements recognized by a large collection of human RBPs in K562 and HepG2 cells. Integrative analyses using five assays identify RBP binding sites on RNA and chromatin in vivo, the in vitro binding preferences of RBPs, the function of RBP binding sites and the subcellular localization of RBPs, producing 1,223 replicated data sets for 356 RBPs. We describe the spectrum of RBP binding throughout the transcriptome and the connections between these interactions and various aspects of RNA biology, including RNA stability, splicing regulation and RNA localization. These data expand the catalogue of functional elements encoded in the human genome by the addition of a large set of elements that function at the RNA level by interacting with RBPs.


Vex-seq: high-throughput identification of the impact of genetic variation on pre-mRNA splicing efficiency.

  • Scott I Adamson‎ et al.
  • Genome biology‎
  • 2018‎

Understanding the functional impact of genomic variants is a major goal of modern genetics and personalized medicine. Although many synonymous and non-coding variants act through altering the efficiency of pre-mRNA splicing, it is difficult to predict how these variants impact pre-mRNA splicing. Here, we describe a massively parallel approach we use to test the impact on pre-mRNA splicing of 2059 human genetic variants spanning 110 alternative exons. This method, called variant exon sequencing (Vex-seq), yields data that reinforce known mechanisms of pre-mRNA splicing, identifies variants that impact pre-mRNA splicing, and will be useful for increasing our understanding of genome function.


Persistent mRNA localization defects and cell death in ALS neurons caused by transient cellular stress.

  • Sebastian Markmiller‎ et al.
  • Cell reports‎
  • 2021‎

Persistent cytoplasmic aggregates containing RNA binding proteins (RBPs) are central to the pathogenesis of late-onset neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). These aggregates share components, molecular mechanisms, and cellular protein quality control pathways with stress-induced RNA granules (SGs). Here, we assess the impact of stress on the global mRNA localization landscape of human pluripotent stem cell-derived motor neurons (PSC-MNs) using subcellular fractionation with RNA sequencing and proteomics. Transient stress disrupts subcellular RNA and protein distributions, alters the RNA binding profile of SG- and ALS-relevant RBPs and recapitulates disease-associated molecular changes such as aberrant splicing of STMN2. Although neurotypical PSC-MNs re-establish a normal subcellular localization landscape upon recovery from stress, cells harboring ALS-linked mutations are intransigent and display a delayed-onset increase in neuronal cell death. Our results highlight subcellular molecular distributions as predictive features and underscore the utility of cellular stress as a paradigm to study ALS-relevant mechanisms.


Sildenafil-mediated neovascularization and protection against myocardial ischaemia reperfusion injury in rats: role of VEGF/angiopoietin-1.

  • Srikanth Koneru‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2008‎

Sildenafil citrate (SC), a drug for erectile dysfunction, is now emerging as a cardiopulmonary drug. Our study aimed to determine a novel role of sildenafil on cardioprotection through stimulating angiogenesis during ischaemia (I) reperfusion (R) at both capillary and arteriolar levels and to examine the role of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) in this mechanistic effect. Rats were divided into: control sham (CS), sildenafil sham (SS), control+IR (CIR) and sildenafil+IR (SIR). Rats were given 0.7 mg/kg, (i.v) of SC or saline 30 min. before occlusion of left anterior descending artery followed by reperfusion (R). Sildenafil treatment increased capillary and arteriolar density followed by increased blood flow (2-fold) compared to control. Treatment with sildenafil demonstrated increased VEGF and Ang-1 mRNA after early reperfusion. PCR data were validated by Western blot analysis. Significant reduction in infarct size, cardiomyocyte and endothelial apoptosis were observed in SC-treated rats. Increased phosphorylation of Akt, eNOS and expression of anti-apoptotic protein Bcl-2, and thioredoxin, hemeoxygenase-1 were observed in SC-treated rats. Echocardiography demonstrated increased fractional shortening and ejection fraction following 45 days of reperfusion in the treatment group. Stress testing with dobutamine infusion and echocardiogram revealed increased contractile reserve in the treatment group. Our study demonstrated for the first time a strong additional therapeutic potential of sildenafil by up-regulating VEGF and Ang-1 system, probably by stimulating a cascade of events leading to neovascularization and conferring myocardial protection in in vivo I/R rat model.


Secoisolariciresinol diglucoside induces neovascularization-mediated cardioprotection against ischemia-reperfusion injury in hypercholesterolemic myocardium.

  • Suresh Varma Penumathsa‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2008‎

Hypercholesterolemia (HC) induced endothelial cell dysfunction and decreased endothelial nitric oxide formation results in impaired angiogenesis and subsequent cardiovascular disorders. Therapeutic angiogenesis is known to be a novel strategy for treatment of patients with ischemic heart disease. We have shown that secoisolariciresinol diglucoside (SDG) is angiogenic as well as cardioprotective against myocardial ischemia. In the present study, we examined the efficacy of SDG in a hypercholesterolemic myocardial infarction (MI) model. The rats were maintained on a normal and high cholesterol diet (2%) for 8 weeks followed by oral administration of SDG (20 mg/kg) for 2 weeks. The rats were divided into four groups (n=24 in each): Control (C); SDG control (SDG); HC; and HC+SDG (HSDG). Isolated hearts subjected to 30 min of global ischemia followed by 120 min of reperfusion were used to measure the cardiac functions, infarct size and to examine the protein expression profile. After treatment, MI was induced by ligating the left anterior descending artery. Echocardiographic parameters were examined 30 days after MI. Significant reduction in total cholesterol, LDL-cholesterol, triglycerides and an increase in HDL-cholesterol levels were observed in HSDG as compared to the HC. Decreased infarct size was observed in the HSDG group (43%) compared to the HC (54%). Increased phosphorylation of endothelial nitric oxide synthase (p-eNOS) (3.1-fold), vascular endothelial growth factor (1.9-fold) and heme oxygenase-1 (2.3-fold) was observed in the HSDG group as compared to the HC group. Significant improvement in left ventricular functions was also observed in the HSDG group as evidenced by increased ejection fraction (55% vs. 45%), fractional shortening (28% vs. 22%) and decreased left ventricular inner diameter in systole (8 vs. 6 mm) in HSDG compared to HC. Moreover, MI model has shown increased capillary density (2531 vs. 1901) and arteriolar density (2.6 vs. 1.8) in SDG-treated rats as compared to the HC. The increased capillary and arteriolar density along with increased left ventricular functions on SDG treatment might be due to increased HO-1, VEGF and p-eNOS expression. In conclusion, our study demonstrates for the first time that SDG treatment reduces ventricular remodeling by neovascularization of the infarcted HC myocardium.


The miR-183/182/96 cluster functions as a potential carcinogenic factor and prognostic factor in kidney renal clear cell carcinoma.

  • Jing Yuan‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

Kidney renal clear cell carcinoma (KIRC) is the most common type of renal cell carcinoma. While a number of treatments have been developed over the past few decades, the prognosis of patients with KIRC remains poor due to tumor metastasis and recurrence. Therefore, the molecular mechanisms of KIRC require to be elucidated in order to identify novel biomarkers. MicroRNAs (miRNAs/miRs) have been studied as important regulators of gene expression in a variety of cancer types. In the present study, a bioinformatics analysis of differentially expressed miRNAs in KIRC vs. normal tissues was performed based on raw miRNA expression data and patient information downloaded from the The Cancer Genome Atlas database. Furthermore, the clinical significance of differentially expressed miRNAs was evaluated, and their target genes and biological effects were further predicted. After applying the cut-off criteria of an absolute fold change of ≥2 and P<0.05, 127 differentially expressed miRNAs between KIRC and normal tissues were identified. The product of the miR-183/182/96 gene cluster, namely miR-183, miR-96 and miR-182, was revealed to be associated with multiple clinicopathological features of KIRC and to have a significant predictive and prognostic value. Subsequent functional enrichment analysis indicated that the target genes of the three miRNAs are associated with various Panther pathways, including the α-adrenergic receptor signaling pathway, metabotropic glutamate receptor group I pathway, histamine H1 receptor-mediated signaling pathway and thyrotropin-releasing hormone receptor signaling pathway. In addition, major enriched gene ontology terms in the category biological process included the intracellular signaling cascade, cellular macromolecule catabolic process and response to DNA damage stimulus. Taken together, the present study suggested that miR-183, miR-96 and miR-182 may function as potential carcinogenic factors in KIRC and may be utilized as prognostic predictors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: