Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Active Protein Neddylation or Ubiquitylation Is Dispensable for Stress Granule Dynamics.

  • Sebastian Markmiller‎ et al.
  • Cell reports‎
  • 2019‎

Stress granule (SG) formation is frequently accompanied by ubiquitin proteasome system (UPS) impairment and ubiquitylated protein accumulation. SGs, ubiquitin, and UPS components co-localize, but the relationship between the ubiquitin pathway and SGs has not been systematically characterized. We utilize pharmacological inhibition of either the ubiquitin- or NEDD8-activating enzyme (UAE or NAE) to probe whether active ubiquitylation or neddylation modulate SG dynamics. We show that UAE inhibition results in rapid loss of global protein ubiquitylation using ubiquitin-specific proteomics. Critically, inhibiting neither UAE nor NAE significantly affected SG formation or disassembly, indicating that active protein ubiquitylation or neddylation is dispensable for SG dynamics. Using antibodies with varying preference for free ubiquitin or polyubiquitin and fluorescently tagged ubiquitin variants in combination with UAE inhibition, we show that SGs co-localize primarily with unconjugated ubiquitin rather than polyubiquitylated proteins. These findings clarify the role of ubiquitin in SG biology and suggest that free ubiquitin may alter SG protein interactions.


Persistent mRNA localization defects and cell death in ALS neurons caused by transient cellular stress.

  • Sebastian Markmiller‎ et al.
  • Cell reports‎
  • 2021‎

Persistent cytoplasmic aggregates containing RNA binding proteins (RBPs) are central to the pathogenesis of late-onset neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). These aggregates share components, molecular mechanisms, and cellular protein quality control pathways with stress-induced RNA granules (SGs). Here, we assess the impact of stress on the global mRNA localization landscape of human pluripotent stem cell-derived motor neurons (PSC-MNs) using subcellular fractionation with RNA sequencing and proteomics. Transient stress disrupts subcellular RNA and protein distributions, alters the RNA binding profile of SG- and ALS-relevant RBPs and recapitulates disease-associated molecular changes such as aberrant splicing of STMN2. Although neurotypical PSC-MNs re-establish a normal subcellular localization landscape upon recovery from stress, cells harboring ALS-linked mutations are intransigent and display a delayed-onset increase in neuronal cell death. Our results highlight subcellular molecular distributions as predictive features and underscore the utility of cellular stress as a paradigm to study ALS-relevant mechanisms.


Dysregulation of RBFOX2 Is an Early Event in Cardiac Pathogenesis of Diabetes.

  • Curtis A Nutter‎ et al.
  • Cell reports‎
  • 2016‎

Alternative splicing (AS) defects that adversely affect gene expression and function have been identified in diabetic hearts; however, the mechanisms responsible are largely unknown. Here, we show that the RNA-binding protein RBFOX2 contributes to transcriptome changes under diabetic conditions. RBFOX2 controls AS of genes with important roles in heart function relevant to diabetic cardiomyopathy. RBFOX2 protein levels are elevated in diabetic hearts despite low RBFOX2 AS activity. A dominant-negative (DN) isoform of RBFOX2 that blocks RBFOX2-mediated AS is generated in diabetic hearts. DN RBFOX2 interacts with wild-type (WT) RBFOX2, and ectopic expression of DN RBFOX2 inhibits AS of RBFOX2 targets. Notably, DN RBFOX2 expression is specific to diabetes and occurs at early stages before cardiomyopathy symptoms appear. Importantly, DN RBFOX2 expression impairs intracellular calcium release in cardiomyocytes. Our results demonstrate that RBFOX2 dysregulation by DN RBFOX2 is an early pathogenic event in diabetic hearts.


A Gene Regulatory Network Cooperatively Controlled by Pdx1 and Sox9 Governs Lineage Allocation of Foregut Progenitor Cells.

  • Hung Ping Shih‎ et al.
  • Cell reports‎
  • 2015‎

The generation of pancreas, liver, and intestine from a common pool of progenitors in the foregut endoderm requires the establishment of organ boundaries. How dorsal foregut progenitors activate pancreatic genes and evade the intestinal lineage choice remains unclear. Here, we identify Pdx1 and Sox9 as cooperative inducers of a gene regulatory network that distinguishes the pancreatic from the intestinal lineage. Genetic studies demonstrate dual and cooperative functions for Pdx1 and Sox9 in pancreatic lineage induction and repression of the intestinal lineage choice. Pdx1 and Sox9 bind to regulatory sequences near pancreatic and intestinal differentiation genes and jointly regulate their expression, revealing direct cooperative roles for Pdx1 and Sox9 in gene activation and repression. Our study identifies Pdx1 and Sox9 as important regulators of a transcription factor network that initiates pancreatic fate and sheds light on the gene regulatory circuitry that governs the development of distinct organs from multi-lineage-competent foregut progenitors.


Disruption in A-to-I Editing Levels Affects C. elegans Development More Than a Complete Lack of Editing.

  • Nabeel S Ganem‎ et al.
  • Cell reports‎
  • 2019‎

A-to-I RNA editing, catalyzed by ADAR proteins, is widespread in eukaryotic transcriptomes. Studies showed that, in C. elegans, ADR-2 can actively deaminate dsRNA, whereas ADR-1 cannot. Therefore, we set out to study the effect of each of the ADAR genes on the RNA editing process. We performed comprehensive phenotypic, transcriptomics, proteomics, and RNA binding screens on worms mutated in a single ADAR gene. We found that ADR-1 mutants exhibit more-severe phenotypes than ADR-2, and some of them are a result of non-editing functions of ADR-1. We also show that ADR-1 significantly binds edited genes and regulates mRNA expression, whereas the effect on protein levels is minor. In addition, ADR-1 primarily promotes editing by ADR-2 at the L4 stage of development. Our results suggest that ADR-1 has a significant role in the RNA editing process and in altering editing levels that affect RNA expression; loss of ADR-1 results in severe phenotypes.


Inter-dependent Centrosomal Co-localization of the cen and ik2 cis-Natural Antisense mRNAs in Drosophila.

  • Julie Bergalet‎ et al.
  • Cell reports‎
  • 2020‎

Overlapping genes are prevalent in most genomes, but the extent to which this organization influences regulatory events operating at the post-transcriptional level remains unclear. Studying the cen and ik2 genes of Drosophila melanogaster, which are convergently transcribed as cis-natural antisense transcripts (cis-NATs) with overlapping 3' UTRs, we found that their encoded mRNAs strikingly co-localize to centrosomes. These transcripts physically interact in a 3' UTR-dependent manner, and the targeting of ik2 requires its 3' UTR sequence and the presence of cen mRNA, which serves as the main driver of centrosomal co-localization. The cen transcript undergoes localized translation in proximity to centrosomes, and its localization is perturbed by polysome-disrupting drugs. By interrogating global fractionation-sequencing datasets generated from Drosophila and human cellular models, we find that RNAs expressed as cis-NATs tend to co-localize to specific subcellular fractions. This work suggests that post-transcriptional interactions between RNAs with complementary sequences can dictate their localization fate in the cytoplasm.


Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival.

  • Anne E Conway‎ et al.
  • Cell reports‎
  • 2016‎

Human pluripotent stem cells (hPSCs) require precise control of post-transcriptional RNA networks to maintain proliferation and survival. Using enhanced UV crosslinking and immunoprecipitation (eCLIP), we identify RNA targets of the IMP/IGF2BP family of RNA-binding proteins in hPSCs. At the broad region and binding site levels, IMP1 and IMP2 show reproducible binding to a large and overlapping set of 3' UTR-enriched targets. RNA Bind-N-seq applied to recombinant full-length IMP1 and IMP2 reveals CA-rich motifs that are enriched in eCLIP-defined binding sites. We observe that IMP1 loss in hPSCs recapitulates IMP1 phenotypes, including a reduction in cell adhesion and increase in cell death. For cell adhesion, we find IMP1 maintains levels of integrin mRNA specifically regulating RNA stability of ITGB5 in hPSCs. Additionally, we show that IMP1 can be linked to hPSC survival via direct target BCL2. Thus, transcriptome-wide binding profiles identify hPSC targets modulating well-characterized IMP1 roles.


Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins.

  • Stephanie C Huelga‎ et al.
  • Cell reports‎
  • 2012‎

Understanding how RNA binding proteins control the splicing code is fundamental to human biology and disease. Here, we present a comprehensive study to elucidate how heterogeneous nuclear ribonucleoparticle (hnRNP) proteins, among the most abundant RNA binding proteins, coordinate to regulate alternative pre-mRNA splicing (AS) in human cells. Using splicing-sensitive microarrays, crosslinking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq), and cDNA sequencing, we find that more than half of all AS events are regulated by multiple hnRNP proteins and that some combinations of hnRNP proteins exhibit significant synergy, whereas others act antagonistically. Our analyses reveal position-dependent RNA splicing maps, in vivo consensus binding sites, a surprising level of cross- and autoregulation among hnRNP proteins, and the coordinated regulation by hnRNP proteins of dozens of other RNA binding proteins and genes associated with cancer. Our findings define an unprecedented degree of complexity and compensatory relationships among hnRNP proteins and their splicing targets that likely confer robustness to cells.


Evaluation of Engineered CRISPR-Cas-Mediated Systems for Site-Specific RNA Editing.

  • Ryan J Marina‎ et al.
  • Cell reports‎
  • 2020‎

Site-directed RNA editing approaches offer great potential to correct genetic mutations in somatic cells while avoiding permanent off-target genomic edits. Nuclease-dead RNA-targeting CRISPR-Cas systems recruit functional effectors to RNA molecules in a programmable fashion. Here, we demonstrate a Streptococcus pyogenes Cas9-ADAR2 fusion system that uses a 3' modified guide RNA (gRNA) to enable adenosine-to-inosine (A-to-I) editing of specific bases on reporter and endogenously expressed mRNAs. Due to the sufficient nature of the 3' gRNA extension sequence, we observe that Cas9 gRNA spacer sequences are dispensable for directed RNA editing, revealing that Cas9 can act as an RNA-aptamer-binding protein. We demonstrate that Cas9-based A-to-I editing is comparable in on-target efficiency and off-target specificity with Cas13 RNA editing versions. This study provides a systematic benchmarking of RNA-targeting CRISPR-Cas designs for reversible nucleotide-level conversion at the transcriptome level.


Non-microRNA binding competitively inhibits LIN28 regulation.

  • Frederick E Tan‎ et al.
  • Cell reports‎
  • 2021‎

RNA binding protein (RBP) expression is finite. For RBPs that are vastly outnumbered by their potential target sites, a simple competition for binding can set the magnitude of post-transcriptional control. Here, we show that LIN28, best known for its direct regulation of let-7 miRNA biogenesis, is also indirectly regulated by its widespread binding of non-miRNA transcripts. Approximately 99% of LIN28 binding sites are found on non-miRNA transcripts, like protein coding and ribosomal RNAs. These sites are bound specifically and strongly, but they do not appear to mediate direct post-transcriptional regulation. Instead, non-miRNA sites act to sequester LIN28 protein and effectively change its functional availability, thus impeding the regulation of let-7 in cells. Together, these data show that the binding properties of the transcriptome broadly influence the ability of an RBP to mediate changes in RNA metabolism and gene expression.


Identification of the global miR-130a targetome reveals a role for TBL1XR1 in hematopoietic stem cell self-renewal and t(8;21) AML.

  • Gabriela Krivdova‎ et al.
  • Cell reports‎
  • 2022‎

Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: