Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle.

  • Matthew A Deardorff‎ et al.
  • Nature‎
  • 2012‎

Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the ‘used’ cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.


The conserved histone deacetylase Rpd3 and its DNA binding subunit Ume6 control dynamic transcript architecture during mitotic growth and meiotic development.

  • Aurélie Lardenois‎ et al.
  • Nucleic acids research‎
  • 2015‎

It was recently reported that the sizes of many mRNAs change when budding yeast cells exit mitosis and enter the meiotic differentiation pathway. These differences were attributed to length variations of their untranslated regions. The function of UTRs in protein translation is well established. However, the mechanism controlling the expression of distinct transcript isoforms during mitotic growth and meiotic development is unknown. In this study, we order developmentally regulated transcript isoforms according to their expression at specific stages during meiosis and gametogenesis, as compared to vegetative growth and starvation. We employ regulatory motif prediction, in vivo protein-DNA binding assays, genetic analyses and monitoring of epigenetic amino acid modification patterns to identify a novel role for Rpd3 and Ume6, two components of a histone deacetylase complex already known to repress early meiosis-specific genes in dividing cells, in mitotic repression of meiosis-specific transcript isoforms. Our findings classify developmental stage-specific early, middle and late meiotic transcript isoforms, and they point to a novel HDAC-dependent control mechanism for flexible transcript architecture during cell growth and differentiation. Since Rpd3 is highly conserved and ubiquitously expressed in many tissues, our results are likely relevant for development and disease in higher eukaryotes.


DNA recombination. Recombination initiation maps of individual human genomes.

  • Florencia Pratto‎ et al.
  • Science (New York, N.Y.)‎
  • 2014‎

DNA double-strand breaks (DSBs) are introduced in meiosis to initiate recombination and generate crossovers, the reciprocal exchanges of genetic material between parental chromosomes. Here, we present high-resolution maps of meiotic DSBs in individual human genomes. Comparing DSB maps between individuals shows that along with DNA binding by PRDM9, additional factors may dictate the efficiency of DSB formation. We find evidence for both GC-biased gene conversion and mutagenesis around meiotic DSB hotspots, while frequent colocalization of DSB hotspots with chromosome rearrangement breakpoints implicates the aberrant repair of meiotic DSBs in genomic disorders. Furthermore, our data indicate that DSB frequency is a major determinant of crossover rate. These maps provide new insights into the regulation of meiotic recombination and the impact of meiotic recombination on genome function.


Aurora A-dependent CENP-A phosphorylation at inner centromeres protects bioriented chromosomes against cohesion fatigue.

  • Grégory Eot-Houllier‎ et al.
  • Nature communications‎
  • 2018‎

Sustained spindle tension applied to sister centromeres during mitosis eventually leads to uncoordinated loss of sister chromatid cohesion, a phenomenon known as "cohesion fatigue." We report that Aurora A-dependent phosphorylation of serine 7 of the centromere histone variant CENP-A (p-CENP-AS7) protects bioriented chromosomes against cohesion fatigue. Expression of a non-phosphorylatable version of CENP-A (CENP-AS7A) weakens sister chromatid cohesion only when sister centromeres are under tension, providing the first evidence of a regulated mechanism involved in protection against passive cohesion loss. Consistent with this observation, p-CENP-AS7 is detected at the inner centromere where it forms a discrete domain. The depletion or inhibition of Aurora A phenocopies the expression of CENP-AS7A and we show that Aurora A is recruited to centromeres in a Bub1-dependent manner. We propose that Aurora A-dependent phosphorylation of CENP-A at the inner centromere protects chromosomes against tension-induced cohesion fatigue until the last kinetochore is attached to spindle microtubules.


Sensitive mapping of recombination hotspots using sequencing-based detection of ssDNA.

  • Pavel P Khil‎ et al.
  • Genome research‎
  • 2012‎

Meiotic DNA double-stranded breaks (DSBs) initiate genetic recombination in discrete areas of the genome called recombination hotspots. DSBs can be directly mapped using chromatin immunoprecipitation followed by sequencing (ChIP-seq). Nevertheless, the genome-wide mapping of recombination hotspots in mammals is still a challenge due to the low frequency of recombination, high heterogeneity of the germ cell population, and the relatively low efficiency of ChIP. To overcome these limitations we have developed a novel method--single-stranded DNA (ssDNA) sequencing (SSDS)--that specifically detects protein-bound single-stranded DNA at DSB ends. SSDS comprises a computational framework for the specific detection of ssDNA-derived reads in a sequencing library and a new library preparation procedure for the enrichment of fragments originating from ssDNA. The use of our technique reduces the nonspecific double-stranded DNA (dsDNA) background >10-fold. Our method can be extended to other systems where the identification of ssDNA or DSBs is desired.


HIV controls the selective packaging of genomic, spliced viral and cellular RNAs into virions through different mechanisms.

  • Laurent Houzet‎ et al.
  • Nucleic acids research‎
  • 2007‎

In addition to genomic RNA, HIV-1 particles package cellular and spliced viral RNAs. In order to determine the encapsidation mechanisms of these RNAs, we determined the packaging efficiencies and specificities of genomic RNA, singly and fully spliced HIV mRNAs and different host RNAs species: 7SL RNA, U6 snRNA and GAPDH mRNA using RT-QPCR. Except GAPDH mRNA, all RNAs are selectively encapsidated. Singly spliced RNAs, harboring the Rev-responsible element, and fully spliced viral RNAs, which do not contain this motif, are enriched in virions to similar levels, even though they are exported from the nucleus by different routes. Deletions of key motifs (SL1 and/or SL3) of the packaging signal of genomic RNA indicate that HIV and host RNAs are encapsidated through independent mechanisms, while genomic and spliced viral RNA compete for the same trans-acting factor due to the presence of the 5' common exon containing the TAR, poly(A) and U5-PBS hairpins. Surprisingly, the RNA dimerization initiation site (DIS/SL1) appears to be the main packaging determinant of genomic RNA, but is not involved in packaging of spliced viral RNAs, suggesting a functional interaction with intronic sequences. Active and selective packaging of host and spliced viral RNAs provide new potential functions to these RNAs in the early stages of the virus life cycle.


Genome-wide analysis of sex-specific differences in the mother-child PELAGIE cohort exposed to organophosphate metabolites.

  • Martina Capriati‎ et al.
  • Scientific reports‎
  • 2023‎

In recent decades, the detrimental effects of environmental contaminants on human health have become a serious public concern. Organophosphate (OP) pesticides are widely used in agriculture, and the negative impacts of OP and its metabolites on human health have been demonstrated. We hypothesized that exposure to OPs during pregnancy could impose damaging effects on the fetus by affecting various processes. We analyzed sex-specific epigenetic responses in the placenta samples obtained from the mother-child PELAGIE cohort. We assayed the telomere length and mitochondrial copy numbers using genomic DNA. We analyzed H3K4me3 by using chromatin immunoprecipitation followed by qPCR (ChIP‒qPCR) and high-throughput sequencing (ChIP-seq). The human study was confirmed with mouse placenta tissue analysis. Our study revealed a higher susceptibility of male placentas to OP exposure. Specifically, we observed telomere length shortening and an increase in γH2AX levels, a DNA damage marker. We detected lower histone H3K9me3 occupancy at telomeres in diethylphosphate (DE)-exposed male placentas than in nonexposed placentas. We found an increase in H3K4me3 occupancy at the promoters of thyroid hormone receptor alpha (THRA), 8-oxoguanine DNA glycosylase (OGG1) and insulin-like growth factor (IGF2) in DE-exposed female placentas. H3K4me3 occupancy at PPARG was increased in both male and female placentas exposed to dimethylphosphate (DM). The genome-wide sequencing of selected samples revealed sex-specific differences induced by DE exposure. Specifically, we found alterations in H3K4me3 in genes related to the immune system in female placenta samples. In DE-exposed male placentas, a decrease in H3K4me3 occupancy at development-related, collagen and angiogenesis-related genes was observed. Finally, we observed a high number of NANOG and PRDM6 binding sites in regions with altered histone occupancy, suggesting that the effects were possibly mediated via these factors. Our data suggest that in utero exposure to organophosphate metabolites affects normal placental development and could potentially impact late childhood.


Exposure to the widely used herbicide atrazine results in deregulation of global tissue-specific RNA transcription in the third generation and is associated with a global decrease of histone trimethylation in mice.

  • Chunxiang Hao‎ et al.
  • Nucleic acids research‎
  • 2016‎

The epigenetic events imposed during germline reprogramming and affected by harmful exposure can be inherited and transferred to subsequent generations via gametes inheritance. In this study, we examine the transgenerational effects promoted by widely used herbicide atrazine (ATZ). We exposed pregnant outbred CD1 female mice and the male progeny was crossed for three generations with untreated females. We demonstrate here that exposure to ATZ affects meiosis, spermiogenesis and reduces the spermatozoa number in the third generation (F3) male mice. We suggest that changes in testis cell types originate from modified transcriptional network in undifferentiated spermatogonia. Importantly, exposure to ATZ dramatically increases the number of transcripts with novel transcription initiation sites, spliced variants and alternative polyadenylation sites. We found the global decrease in H3K4me3 occupancy in the third generation males. The regions with altered H3K4me3 occupancy in F3 ATZ-derived males correspond to altered H3K4me3 occupancy of F1 generation and 74% of changed peaks in F3 generation are associated with enhancers. The regions with altered H3K4me3 occupancy are enriched in SP family and WT1 transcription factor binding sites. Our data suggest that the embryonic exposure to ATZ affects the development and the changes induced by ATZ are transferred up to three generations.


In utero exposure to chlordecone affects histone modifications and activates LINE-1 in cord blood.

  • Louis Legoff‎ et al.
  • Life science alliance‎
  • 2021‎

Environmental factors can induce detrimental consequences into adulthood life. In this study, we examined the epigenetic effects induced by in utero chlordecone (CD) exposure on human male cord blood as well as in blood-derived Ke-37 cell line. Genome-wide analysis of histone H3K4me3 distribution revealed that genes related to chromosome segregation, chromatin organization, and cell cycle have altered occupancy in their promoters. The affected regions were enriched in ESR1, SP family, and IKZF1 binding motifs. We also observed a global reduction in H3K9me3, markedly in repeated sequences of the genome. Decrease in H3K9me3 after CD exposure correlates with decreased methylation in LINE-1 promoters and telomere length extension. These observations on human cord blood were assessed in the Ke-37 human cell line. H3K4me3 and the expression of genes related to immune response, DNA repair, and chromatin organization, which were affected in human cord blood were also altered in CD-exposed Ke-37 cells. Our data suggest that developmental exposure to CD leads to profound changes in histone modification patterns and affects the processes controlled by them in human cord blood.


The epigenetic processes of meiosis in male mice are broadly affected by the widely used herbicide atrazine.

  • Aurore Gely-Pernot‎ et al.
  • BMC genomics‎
  • 2015‎

Environmental factors such as pesticides can cause phenotypic changes in various organisms, including mammals. We studied the effects of the widely used herbicide atrazine (ATZ) on meiosis, a key step of gametogenesis, in male mice.


Suppression of genetic recombination in the pseudoautosomal region and at subtelomeres in mice with a hypomorphic Spo11 allele.

  • Fatima Smagulova‎ et al.
  • BMC genomics‎
  • 2013‎

Homologous recombination is the key process that generates genetic diversity and drives evolution. SPO11 protein triggers recombination by introducing DNA double stranded breaks at discreet areas of the genome called recombination hotspots. The hotspot locations are largely determined by the DNA binding specificity of the PRDM9 protein in human, mice and most other mammals. In budding yeast Saccharomyces cerevisae, which lacks a Prdm9 gene, meiotic breaks are formed opportunistically in the regions of accessible chromatin, primarily at gene promoters. The genome-wide distribution of hotspots in this organism can be altered by tethering Spo11 protein to Gal4 recognition sequences in the strain expressing Spo11 attached to the DNA binding domain of the Gal4 transcription factor. To establish whether similar re-targeting of meiotic breaks can be achieved in PRDM9-containing organisms we have generated a Gal4BD-Spo11 mouse that expresses SPO11 protein joined to the DNA binding domain of yeast Gal4.


Extensive sex differences at the initiation of genetic recombination.

  • Kevin Brick‎ et al.
  • Nature‎
  • 2018‎

Meiotic recombination differs between males and females; however, when and how these differences are established is unknown. Here we identify extensive sex differences at the initiation of recombination by mapping hotspots of meiotic DNA double-strand breaks in male and female mice. Contrary to past findings in humans, few hotspots are used uniquely in either sex. Instead, grossly different recombination landscapes result from up to fifteen-fold differences in hotspot usage between males and females. Indeed, most recombination occurs at sex-biased hotspots. Sex-biased hotspots seem to be partly determined by chromosome structure, and DNA methylation, which is absent in females at the onset of meiosis, has a substantial role. Sex differences are also evident later in meiosis as the rate at which meiotic breaks are repaired as crossovers differs between males and females in distal regions. The suppression of distal crossovers may help to minimize age-related aneuploidy that arises owing to cohesion loss during dictyate arrest in females.


Gestational exposure to chlordecone promotes transgenerational changes in the murine reproductive system of males.

  • Aurore Gely-Pernot‎ et al.
  • Scientific reports‎
  • 2018‎

Environmental factors can affect epigenetic events during germline reprogramming and impose distinctive transgenerational consequences onto the offspring. In this study, we examined the transgenerational effects of chlordecone (CD), an organochlorine insecticide with well-known estrogenic properties. We exposed pregnant mice to CD from embryonic day 6.5 to 15.5 and observed a reduction in spermatogonia (SG) numbers in F3, meiotic defects in spermatocytes and decrease in spermatozoa number in the first and third generation of male progeny. The RNA qRT-PCR expression analysis in F1 and transcriptomics analysis in F3 males using the whole testes revealed changes in the expression of genes associated with chromosome segregation, cell division and DNA repair. The expression of the master regulator of pluripotency, Pou5f1, decreased in foetal and increased in adult F1, but not in F3 adult testes. Analysis of histone H3K4me3 distribution revealed widespread changes in its occupancy in the genome of F1 and F3 generations. We established that 7.1% of altered epigenetic marks were conserved between F1 and F3 generations. The overlapping changes common to F1 and F3 include genes implicated in cell adhesion and transcription factor activities functions. Differential peaks observed in F1 males are significantly enriched in predicted ESR1 binding sites, some of which we confirmed to be functional. Our data demonstrate that CD-mediated impairment of reproductive functions could be transmitted to subsequent generations.


Combining RNA and protein profiling data with network interactions identifies genes associated with spermatogenesis in mouse and human.

  • Fabrice G Petit‎ et al.
  • Biology of reproduction‎
  • 2015‎

Genome-wide RNA profiling studies have identified hundreds of transcripts that are highly expressed in mammalian male germ cells, including many that are undetectable in somatic control tissues. Among them, genes important for spermatogenesis are significantly enriched. Information about mRNAs and their cognate proteins facilitates the identification of novel conserved target genes for functional studies in the mouse. By inspecting genome-wide RNA profiling data, we manually selected 81 genes for which RNA is detected almost exclusively in the human male germline and, in most cases, in rodent testicular germ cells. We observed corresponding mRNA/protein patterns in 43 cases using immunohistochemical data from the Human Protein Atlas and large-scale human protein profiling data obtained via mass spectroscopy. Protein network information enabled us to establish an interaction map of 38 proteins that points to potentially important testicular roles for some of them. We further characterized six candidate genes at the protein level in the mouse. We conclude that conserved genes induced in testis tend to show similar mRNA/protein expression patterns across species. Specifically, our results suggest roles during embryogenesis and adult spermatogenesis for Foxr1 and Sox30 and during spermiogenesis and fertility for Fam71b, 1700019N19Rik, Hmgb4, and Zfp597.


EXOSC10/Rrp6 is post-translationally regulated in male germ cells and controls the onset of spermatogenesis.

  • Soazik P Jamin‎ et al.
  • Scientific reports‎
  • 2017‎

EXOSC10 is a catalytic subunit of the exosome that processes biologically active transcripts, degrades aberrant mRNAs and targets certain long non-coding RNAs (lncRNAs). The yeast orthologue Rrp6 is required for efficient growth and gametogenesis, and becomes unstable during meiosis. However, nothing is known about the localization, stability and function of EXOSC10 in the rodent male germline. We detect the protein in nucleoli and the cytoplasm of mitotic and meiotic germ cells, and find that it transiently associates with the XY body, a structure targeted by meiotic sex chromosome inactivation (MSCI). Finally, EXOSC10 becomes unstable at later stages of gamete development. To determine Exosc10's meiotic function, we inactivated the gene specifically in male germ cells using cre recombinase controlled by Stra8 or Ddx4/Vasa promoters. Mutant mice have small testes, show impaired germ cell differentiation and are subfertile. Our results demonstrate that EXOSC10 is post-translationally regulated in germ cells, associate the protein with epigenetic chromosome silencing, and reveal its essential role in germ cell growth and development.


Interrogating the Functions of PRDM9 Domains in Meiosis.

  • Sarah Thibault-Sennett‎ et al.
  • Genetics‎
  • 2018‎

Homologous recombination is required for proper segregation of homologous chromosomes during meiosis. It occurs predominantly at recombination hotspots that are defined by the DNA binding specificity of the PRDM9 protein. PRDM9 contains three conserved domains typically involved in regulation of transcription; yet, the role of PRDM9 in gene expression control is not clear. Here, we analyze the germline transcriptome of Prdm9-/- male mice in comparison to Prdm9+/+ males and find no apparent differences in the mRNA and miRNA profiles. We further explore the role of PRDM9 in meiosis by analyzing the effect of the KRAB, SSXRD, and post-SET zinc finger deletions in a cell culture expression system and the KRAB domain deletion in mice. We found that although the post-SET zinc finger and the KRAB domains are not essential for the methyltransferase activity of PRDM9 in cell culture, the KRAB domain mutant mice show only residual PRDM9 methyltransferase activity and undergo meiotic arrest. In aggregate, our data indicate that domains typically involved in regulation of gene expression do not serve that role in PRDM9, but are likely involved in setting the proper chromatin environment for initiation and completion of homologous recombination.


Bloom's syndrome and PICH helicases cooperate with topoisomerase IIα in centromere disjunction before anaphase.

  • Sébastien Rouzeau‎ et al.
  • PloS one‎
  • 2012‎

Centromeres are specialized chromosome domains that control chromosome segregation during mitosis, but little is known about the mechanisms underlying the maintenance of their integrity. Centromeric ultrafine anaphase bridges are physiological DNA structures thought to contain unresolved DNA catenations between the centromeres separating during anaphase. BLM and PICH helicases colocalize at these ultrafine anaphase bridges and promote their resolution. As PICH is detectable at centromeres from prometaphase onwards, we hypothesized that BLM might also be located at centromeres and that the two proteins might cooperate to resolve DNA catenations before the onset of anaphase. Using immunofluorescence analyses, we demonstrated the recruitment of BLM to centromeres from G2 phase to mitosis. With a combination of fluorescence in situ hybridization, electron microscopy, RNA interference, chromosome spreads and chromatin immunoprecipitation, we showed that both BLM-deficient and PICH-deficient prometaphase cells displayed changes in centromere structure. These cells also had a higher frequency of centromeric non disjunction in the absence of cohesin, suggesting the persistence of catenations. Both proteins were required for the correct recruitment to the centromere of active topoisomerase IIα, an enzyme specialized in the catenation/decatenation process. These observations reveal the existence of a functional relationship between BLM, PICH and topoisomerase IIα in the centromere decatenation process. They indicate that the higher frequency of centromeric ultrafine anaphase bridges in BLM-deficient cells and in cells treated with topoisomerase IIα inhibitors is probably due not only to unresolved physiological ultrafine anaphase bridges, but also to newly formed ultrafine anaphase bridges. We suggest that BLM and PICH cooperate in rendering centromeric catenates accessible to topoisomerase IIα, thereby facilitating correct centromere disjunction and preventing the formation of supernumerary centromeric ultrafine anaphase bridges.


Embryonic exposure to the widely-used herbicide atrazine disrupts meiosis and normal follicle formation in female mice.

  • Aurore Gely-Pernot‎ et al.
  • Scientific reports‎
  • 2017‎

The widely-used herbicide atrazine (ATZ) is detected in ground and surface water in many countries. Several studies in animals have demonstrated that ATZ has endocrine-disrupting effects on male and female reproduction in many vertebrate species. In this study, we investigated the effects of ATZ exposure on meiosis, a key step in gametogenesis in mammals. The treatment was initiated before oocyte entry into meiosis, which occurs during the embryonic period in females. We found that embryonic exposure to ATZ increases the level of 8-oxo-guanine in the nucleus of meiotic cells, reflecting oxidative stress and affecting meiotic double-strand break repair, chromosome synapsis and crossover numbers. Finally, embryonic exposure to ATZ reduces the number of primordial follicles and increases the incidence of multi-oocyte follicles in adult mice. Our data demonstrate that embryonic exposure to ATZ disrupts prophase I of meiosis and affects normal follicle formation in female mice.


Intracellular HIV-1 Gag localization is impaired by mutations in the nucleocapsid zinc fingers.

  • Boyan Grigorov‎ et al.
  • Retrovirology‎
  • 2007‎

The HIV-1 nucleocapsid protein (NC) is formed of two CCHC zinc fingers flanked by highly basic regions. HIV-1 NC plays key roles in virus structure and replication via its nucleic acid binding and chaperoning properties. In fact, NC controls proviral DNA synthesis by reverse transcriptase (RT), gRNA dimerization and packaging, and virion assembly.


Ovarian dysfunction following prenatal exposure to an insecticide, chlordecone, associates with altered epigenetic features.

  • Louis Legoff‎ et al.
  • Epigenetics & chromatin‎
  • 2019‎

Chlordecone (CD) is an insecticide that was used in the French West Indies for several years to control the banana root borer pest. Given its nonsignificant degradation, it persists in the environment. CD is a carcinogenic compound with reproductive and developmental toxicity and is a recognized endocrine-disrupting chemical. In this study, we examined the effects of CD on female reproductive system of mice with the focus on epigenetic features in ovary. Our data show that gestational exposure to low dose of CD affects meiotic double-strand breaks repair in female embryos. In adult mice derived from CD-treated pregnant females, we observed delayed puberty, decreased number of primordial and increased number of atretic follicles. Gene expression analysis revealed that Rcbtb2 and Rbpms genes were not expressed in embryonic gonads. Estrogen signaling- and oocyte maturation-associated genes were downregulated in adult ovaries. The morphological changes were associated with altered epigenetic features: increased H2Aub and increased H3K27me3 and decreased H4ac and H3K4me3 in embryonic oocytes. The DNA damage-associated, γH2AX marks were detected in the follicles of treated but not control adult ovaries. We also found reduced H3K4me3 and H4ac in fully grown oocytes of the treated ovaries. The ChIP-seq analysis of H3K4me3 in adult ovaries showed that target genes of ZFP57 and TRIM28, which regulate pluripotency and imprinting, were significantly enriched in altered regions. Our study clearly demonstrates that gestational exposure to a low dose of CD impairs the function of female reproductive system and the changes are associated with altered epigenetic features.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: