Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Modulation of Cav1.3 Ca2+ channel gating by Rab3 interacting molecule.

  • Mathias Gebhart‎ et al.
  • Molecular and cellular neurosciences‎
  • 2010‎

Neurotransmitter release and spontaneous action potentials during cochlear inner hair cell (IHC) development depend on the activity of Ca(v)1.3 voltage-gated L-type Ca(2+) channels. Their voltage- and Ca(2+)-dependent inactivation kinetics are slower than in other tissues but the underlying molecular mechanisms are not yet understood. We found that Rab3-interacting molecule-2alpha (RIM2alpha) mRNA is expressed in immature cochlear IHCs and the protein co-localizes with Ca(v)1.3 in the same presynaptic compartment of IHCs. Expression of RIM proteins in tsA-201 cells revealed binding to the beta-subunit of the channel complex and RIM-induced slowing of both Ca(2+)- and voltage-dependent inactivation of Ca(v)1.3 channels. By inhibiting inactivation, RIM induced a non-inactivating current component typical for IHC Ca(v)1.3 currents which should allow these channels to carry a substantial window current during prolonged depolarizations. These data suggest that RIM2 contributes to the stabilization of Ca(v)1.3 gating kinetics in immature IHCs.


Hypercholesterolemia in rats impairs the cholinergic system and leads to memory deficits.

  • Celine Ullrich‎ et al.
  • Molecular and cellular neurosciences‎
  • 2010‎

Alzheimer's disease (AD) is a chronic brain disorder characterized by cognitive impairment, cholinergic dysfunction, inflammation, tau and beta-amyloid pathology and vascular damage. Recent studies have shown, that high cholesterol levels are linked to the pathology of AD. The aim of our present work was to study the effects of hypercholesterolemia in adult rats. Five months after 5% cholesterol-enriched diet plasma cholesterol levels and total weight were significantly enhanced compared to controls. Spatial memory was studied in an 8-arm radial maze and cholesterol-treated rats showed an impaired learning and long-term memory. Hypercholesterolemia significantly reduced the number of cholinergic neurons in the basal nucleus of Meynert and decreased acetylcholine levels in the cortex. Nerve growth factor was only slightly enhanced in the cortex of cholesterol-treated animals. Levels of amyloid precursor protein, beta-amyloid(1-42), as well as tau and phospho-tau 181 were significantly enhanced in the cortex of cholesterol-fed rats. Hypercholesterolemia markedly increased several cerebral inflammatory markers and enhanced microglial CD11b-like immunoreactivity. Vascular density, stained by RECA-1 was not changed. However, cholesterol induced cortical microbleedings illustrated by intensive anti-rat IgG-positive spots in the cortex. In conclusion, our data demonstrate that hypercholesterolemia in rats caused memory impairment, cholinergic dysfunction, inflammation, enhanced cortical beta-amyloid and tau and microbleedings, all indications, which resemble an AD-like pathology.


Homocysteine has anti-inflammatory properties in a hypercholesterolemic rat model in vivo.

  • Michael Pirchl‎ et al.
  • Molecular and cellular neurosciences‎
  • 2012‎

Inflammation is a hallmark in many neurodegenerative diseases like Alzheimer's disease or vascular dementia. Cholesterol and homocysteine are both vascular risk factors which have been associated with dementia, inflammation and blood-brain barrier dysfunction. In previous studies we found that hypercholesterolemia but not hyperhomocysteinemia induced inflammation in rats in vivo. The aim of the present study was to investigate the effect of a combined treatment of Sprague Dawley rats with cholesterol and homocysteine for 5 months on spatial learning and memory, blood-brain barrier integrity and inflammation. Cholesterol treated rats showed severe learning deficits, while rats treated with cholesterol and homocysteine (Mix) counteracted the cholesterol-induced inflammation and partly the cortical blood-brain barrier disruptions, although cognition was still impaired. To study the potential protective effect of homocysteine, inflammation was induced in organotypic rat brain cortex slices and primary microglial cells by treatment with different inflammatory stimuli (e.g. lipopolysaccharide or tissue plasminogen activator). Tissue plasminogen activator-induced inflammation was counteracted by homocysteine. In conclusion, our data demonstrate that homocysteine significantly ameliorates cholesterol-induced inflammation and blood-brain barrier disruption but not the memory impairment, possibly involving a tissue plasminogen activator-related mechanism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: