Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 43 papers

New 6- and 7-heterocyclyl-1H-indole derivatives as potent tubulin assembly and cancer cell growth inhibitors.

  • Giuseppe La Regina‎ et al.
  • European journal of medicinal chemistry‎
  • 2018‎

We designed new 3-arylthio- and 3-aroyl-1H-indole derivatives 3-22 bearing a heterocyclic ring at position 5, 6 or 7 of the indole nucleus. The 6- and 7-heterocyclyl-1H-indoles showed potent inhibition of tubulin polymerization, binding of colchicine to tubulin and growth of MCF-7 cancer cells. Compounds 13 and 19 inhibited a panel of cancer cells and the NCI/ADR-RES multidrug resistant cell line at low nanomolar concentrations. Compound 13 at 50 nM induced 77% G2/M in HeLa cells, and at 20 nM caused 50% stable arrest of mitosis. As an inhibitor of HepG2 cells (IC50 = 20 nM), 13 was 4-fold superior to 19. Compound 13 was a potent inhibitor of the human U87MG glioblastoma cells at nanomolar concentrations, being nearly one order of magnitude superior to previously reported arylthioindoles. The present results highlight 13 as a robust scaffold for the design of new anticancer agents.


Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor.

  • Barbara Costa‎ et al.
  • PloS one‎
  • 2013‎

Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM), p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2) oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ) produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients.


Regulation of Erythropoietin Receptor Activity in Endothelial Cells by Different Erythropoietin (EPO) Derivatives: An in Vitro Study.

  • Maria Letizia Trincavelli‎ et al.
  • International journal of molecular sciences‎
  • 2013‎

In endothelial cells, erythropoietin receptors (EPORs) mediate the protective, proliferative and angiogenic effects of EPO and its analogues, which act as EPOR agonists. Because hormonal receptors undergo functional changes upon chronic exposure to agonists and because erythropoiesis-stimulating agents (ESAs) are used for the long-term treatment of anemia, it is critical to determine the mechanism by which EPOR responsiveness is regulated at the vascular level after prolonged exposure to ESAs. Here, we investigated EPOR desensitization/resensitization in human umbilical vein endothelial cells (HUVECs) upon exposure to three ESAs with different pharmacokinetic profiles, epoetin alpha (EPOα), darbepoetin alpha (DarbEPO) and continuous EPOR activator (CERA). These agonists all induced activation of the transcription factor STAT-5, which is a component of the intracellular pathway associated with EPORs. STAT-5 activation occurred with either monophasic or biphasic kinetics for EPOα/DarbEPO and CERA, respectively. ESAs, likely through activation of the STAT-5 pathway, induced endothelial cell proliferation and stimulated angiogenesis in vitro, demonstrating a functional role for epoetins on endothelial cells. All epoetins induced EPOR desensitization with more rapid kinetics for CERA compared to EPOα and DarbEPO. However, the recovery of receptor responsiveness was strictly dependent on the type of epoetin, the agonist concentration and the time of exposure to the agonist. EPOR resensitization occurred with more rapid kinetics after exposure to low epoetin concentrations for a short period of desensitization. When the highest concentration of agonists was tested, the recovery of receptor responsiveness was more rapid with CERA compared to EPOα and was completely absent with DarbEPO. Our results demonstrate that these three ESAs regulate EPOR resensitization by very different mechanisms and that both the type of molecule and the length of EPOR stimulation are factors that are critical for the control of EPOR functioning in endothelial cells. The differences observed in receptor resensitization after stimulation with the structurally different ESAs are most likely due different control mechanisms of receptor turnover at the intracellular level.


BEST1 protein stability and degradation pathways differ between autosomal dominant Best disease and autosomal recessive bestrophinopathy accounting for the distinct retinal phenotypes.

  • Andrea Milenkovic‎ et al.
  • Human molecular genetics‎
  • 2018‎

Mutations in bestrophin-1 (BEST1) are associated with distinct retinopathies, notably three forms with autosomal dominant inheritance and one condition with an autosomal recessive mode of transmission. The molecular mechanisms underlying their distinct retinal phenotypes are mostly unknown. Although heterozygous missense mutations in BEST1 reveal dominant-negative effects in patients with autosomal dominant Best disease (BD), heterozygous mutations associated with autosomal recessive bestrophinopathy (ARB) display no disease phenotype. Here we show that the recessive mutations trigger a strong and fast protein degradation process in the endoplasmic reticulum (ER), thereby favoring a decreased stoichiometry of mutant versus normal BEST1 subunits in the assembly of the homo-pentameric BEST1 chloride channel. In contrast, dominant mutations escape ER-associated degradation and are subjected to a slightly delayed post-ER degradation via the endo-lysosomal degradation pathway. As a result, increased formation of a non-functional BEST1 channel occurs due to a roughly equimolar incorporation of normal and mutant BEST1 subunits into the channel complex. Taken together, our data provide insight into the molecular pathways of dominantly and recessively acting BEST1 missense mutations suggesting that the site of subcellular protein quality control as well as the rate and degree of mutant protein degradation are ultimately responsible for the distinct retinal disease phenotypes in BD and ARB.


Retinoschisin and novel Na/K-ATPase interaction partners Kv2.1 and Kv8.2 define a growing protein complex at the inner segments of mammalian photoreceptors.

  • Verena Schmid‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2022‎

The RS1 gene on Xp 22.13 encodes retinoschisin which is known to directly interact with the retinal Na/K-ATPase at the photoreceptor inner segments. Pathologic mutations in RS1 cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy in young males. To further delineate the retinoschisin-Na/K-ATPase complex, co-immunoprecipitation was performed with porcine and murine retinal lysates targeting the ATP1A3 subunit. This identified the voltage-gated potassium (Kv) channel subunits Kv2.1 and Kv8.2 as direct interaction partners of the retinal Na/K-ATPase. Colocalization of the individual components of the complex was demonstrated at the membrane of photoreceptor inner segments. We further show that retinoschisin-deficiency, a frequent consequence of molecular pathology in XLRS, causes mislocalization of the macromolecular complex during postnatal retinal development with a simultaneous reduction of Kv2.1 and Kv8.2 protein expression, while the level of retinal Na/K-ATPase expression remains unaffected. Patch-clamp analysis revealed no effect of retinoschisin-deficiency on Kv channel mediated potassium ion currents in vitro. Together, our data suggest that Kv2.1 and Kv8.2 together with retinoschisin and the retinal Na/K-ATPase are integral parts of a macromolecular complex at the photoreceptor inner segments. Defective compartmentalization of this complex due to retinoschisin-deficiency may be a crucial step in initial XLRS pathogenesis.


The Role of Chemokines in the Pathophysiology of Major Depressive Disorder.

  • Vladimir M Milenkovic‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Major depressive disorder (MDD) is a debilitating condition, whose high prevalence and multisymptomatic nature set its standing as a leading contributor to global disability. To better understand this psychiatric disease, various pathophysiological mechanisms have been proposed, including changes in monoaminergic neurotransmission, imbalance of excitatory and inhibitory signaling in the brain, hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, and abnormalities in normal neurogenesis. While previous findings led to a deeper understanding of the disease, the pathogenesis of MDD has not yet been elucidated. Accumulating evidence has confirmed the association between chronic inflammation and MDD, which is manifested by increased levels of the C-reactive protein, as well as pro-inflammatory cytokines, such as Interleukin 1 beta, Interleukin 6, and the Tumor necrosis factor alpha. Furthermore, recent findings have implicated a related family of cytokines with chemotactic properties, known collectively as chemokines, in many neuroimmune processes relevant to psychiatric disorders. Chemokines are small (8-12 kDa) chemotactic cytokines, which are known to play roles in direct chemotaxis induction, leukocyte and macrophage migration, and inflammatory response propagation. The inflammatory chemokines possess the ability to induce migration of immune cells to the infection site, whereas their homeostatic chemokine counterparts are responsible for recruiting cells for their repair and maintenance. To further support the role of chemokines as central elements to healthy bodily function, recent studies suggest that these proteins demonstrate novel, brain-specific mechanisms including the modulation of neuroendocrine functions, chemotaxis, cell adhesion, and neuroinflammation. Elevated levels of chemokines in patient-derived serum have been detected in individuals diagnosed with major depressive disorder, bipolar disorder, and schizophrenia. Furthermore, despite the considerable heterogeneity of experimental samples and methodologies, existing biomarker studies have clearly demonstrated the important role of chemokines in the pathophysiology of psychiatric disorders. The purpose of this review is to summarize the data from contemporary experimental and clinical studies, and to evaluate available evidence for the role of chemokines in the central nervous system (CNS) under physiological and pathophysiological conditions. In light of recent results, chemokines could be considered as possible peripheral markers of psychiatric disorders, and/or targets for treating depressive disorders.


TSPO PIGA Ligands Promote Neurosteroidogenesis and Human Astrocyte Well-Being.

  • Eleonora Da Pozzo‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

The steroidogenic 18 kDa translocator protein (TSPO) is an emerging, attractive therapeutic tool for several pathological conditions of the nervous system. Here, 13 high affinity TSPO ligands belonging to our previously described N,N-dialkyl-2-phenylindol-3-ylglyoxylamide (PIGA) class were evaluated for their potential ability to affect the cellular Oxidative Metabolism Activity/Proliferation index, which is used as a measure of astrocyte well-being. The most active PIGA ligands were also assessed for steroidogenic activity in terms of pregnenolone production, and the values were related to the metabolic index in rat and human models. The results showed a positive correlation between the increase in the Oxidative Metabolism Activity/Proliferation index and the pharmacologically induced stimulation of steroidogenesis. The specific involvement of steroid molecules in mediating the metabolic effects of the PIGA ligands was demonstrated using aminoglutethimide, a specific inhibitor of the first step of steroid biosynthesis. The most promising steroidogenic PIGA ligands were the 2-naphthyl derivatives that showed a long residence time to the target, in agreement with our previous data. In conclusion, TSPO ligand-induced neurosteroidogenesis was involved in astrocyte well-being.


Theranostic properties of a survivin-directed molecular beacon in human melanoma cells.

  • Sara Carpi‎ et al.
  • PloS one‎
  • 2014‎

Survivin is an inhibitor of apoptosis overexpressed in different types of tumors and undetectable in most terminally differentiated normal tissues. In the current study, we sought to evaluate the in vitro theranostic properties of a molecular beacon-oligodeoxynucleotide (MB) that targets survivin mRNA. We used laser scanning confocal microscopy to study MB delivery in living cells and real-time PCR and western blot to assess selective survivin-targeting in human malignant melanoma cells. We further assess the pro-apoptotic effect of MB by measuring internucleosomal DNA fragmentation, dissipation of mitochondrial membrane potential (MMP) and changes in nuclear morphology. Transfection of MB into A375 and 501 Mel cells generated high signal intensity from the cytoplasm, while no signal was detected in the extracellular environment and in survivin-negative cells (i.e., human melanocytes and monocytes). MB time dependently decreased survivin mRNA and protein expression in melanoma cells with the maximum effect reached at 72 h. Treatment of melanoma cells with MB induced apoptosis by significant changes in MMP, accumulation of histone-complexed DNA fragments in the cytoplasm and nuclear condensation. MB also enhanced the pro-apoptotic effect of standard chemotherapeutic drugs tested at clinically relevant concentrations. The MB tested in the current study conjugates the ability of imaging with the pharmacological silencing activity against survivin mRNA in human melanoma cells and may represent an innovative approach for cancer diagnosis and treatment.


Chemosensory properties of murine nasal and cutaneous trigeminal neurons identified by viral tracing.

  • Nils Damann‎ et al.
  • BMC neuroscience‎
  • 2006‎

Somatosensation of the mammalian head is mainly mediated by the trigeminal nerve that provides innervation of diverse tissues like the face skin, the conjunctiva of the eyes, blood vessels and the mucouse membranes of the oral and nasal cavities. Trigeminal perception encompasses thermosensation, touch, and pain. Trigeminal chemosensation from the nasal epithelia mainly evokes stinging, burning, or pungent sensations. In vitro characterization of trigeminal primary sensory neurons derives largely from analysis of complete neuronal populations prepared from sensory ganglia. Thus, functional properties of primary trigeminal afferents depending on the area of innervation remain largely unclear.


Human Microglia Extracellular Vesicles Derived from Different Microglia Cell Lines: Similarities and Differences.

  • Lorenzo Ceccarelli‎ et al.
  • ACS omega‎
  • 2022‎

Microglial cells are a component of the innate immune system in the brain that support cell-to-cell communication via secreted molecules and extracellular vesicles (EVs). EVs can be divided into two major populations: large (LEVs) and small (SEVs) EVs, carrying different mediators, such as proteins, lipids, and miRNAs. The microglia EVs cargo crucially reflects the status of parental cells and can lead to both beneficial and detrimental effects in many physiopathological states. Herein, a workflow for the extraction and characterization of SEVs and LEVs from human C20 and HMC3 microglia cell lines derived, respectively, from adult and embryonic microglia is reported. EVs were gathered from the culture media of the two cell lines by sequential ultracentrifugation steps and their biochemical and biophysical properties were analyzed by Western blot, transmission electron microscopy, and dynamic light scattering. Although the C20- and HMC3-derived EVs shared several common features, C20-derived EVs were slightly lower in number and more polydispersed. Interestingly, C20- but not HMC3-SEVs were able to interfere with the proliferation of U87 glioblastoma cells. This correlated with the different relative levels of eight miRNAs involved in neuroinflammation and tumor progression in the C20- and HMC3-derived EVs, which in turn reflected a different basal activation state of the two cell types. Our data fill a gap in the community of microglia EVs, in which the preparations from human cells have been poorly characterized so far. Furthermore, these results shed light on both the differences and similarities of EVs extracted from different human microglia cell models, underlining the need to better characterize the features and biological effects of EVs for therein useful and correct application.


Reduced microglia activity in patients with long-term immunosuppressive therapy after liver transplantation.

  • Meike Dirks‎ et al.
  • European journal of nuclear medicine and molecular imaging‎
  • 2021‎

Calcineurin inhibitors (CNI) can cause long-term impairment of brain function. Possible pathomechanisms include alterations of the cerebral immune system. This study used positron emission tomography (PET) imaging with the translocator protein (TSPO) ligand 18F-GE-180 to evaluate microglial activation in liver-transplanted patients under different regimens of immunosuppression.


The Citrus Flavonoid Naringenin Protects the Myocardium from Ageing-Dependent Dysfunction: Potential Role of SIRT1.

  • Lara Testai‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2020‎

Sirtuin 1 (SIRT1) enzyme plays a pivotal role in the regulation of many physiological functions. In particular, it is implicated in ageing-related diseases, such as cardiac hypertrophy, myocardial infarct, and endothelial dysfunction; moreover, its expression decreases with age. Therefore, an effective strategy to extend the lifespan and improve cardiovascular function is the enhancement of the expression/activity of SIRT1 with exogenous agents. The Citrus flavonoid naringenin (NAR) presents structural similarity with the natural SIRT1 activator resveratrol. In this study, we demonstrate through in vitro assays that NAR significantly activates SIRT1 enzyme and shows antisenescence effects. The binding mode of NAR into SIRT1 was detailed investigated through in silico studies. Moreover, chronic administration (for six months) of NAR (100 mg/kg/day) to 6-month-old mice leads to an enhancement of SIRT1 expression and a marked reduction of reactive oxygen species production in myocardial tissue. Furthermore, at the end of the treatment, the plasma levels of two well-known markers of cardiovascular inflammation, TNF-α and IL6, are significantly reduced in 12-month-old mice treated with NAR, as well as the cardiovascular risk (total cholesterol/HDL ratio) compared to control mice. Finally, the age-associated fibrotic remodeling, which is well detected through a Mallory trichrome staining in the vehicle-treated 12-month-old mice, is significantly reduced by the chronic treatment with NAR. Moreover, an improvement of myocardium functionality is highlighted by the enhancement of citrate synthase activity and stabilization of the mitochondrial membrane potential after NAR treatment. Taken together, these results suggest that a nutraceutical approach with NAR may have positive impacts on many critical hallmarks of myocardial senescence, contributing to improve the cardiac performance in aged subjects.


CLN7/MFSD8 may be an important factor for SARS-CoV-2 cell entry.

  • Elena-Sofia Heinl‎ et al.
  • iScience‎
  • 2022‎

The SARS-CoV-2 virus has triggered a worldwide pandemic. According to the BioGrid database, CLN7 (MFSD8) is thought to interact with several viral proteins. The aim of this work was to investigate a possible involvement of CLN7 in the infection process. Experiments on a CLN7-deficient HEK293T cell line exhibited a 90% reduced viral load compared to wild-type cells. This observation may be linked to the finding that CLN7 ko cells have a significantly reduced GM1 content in their cell membrane. GM1 is found highly enriched in lipid rafts, which are thought to play an important role in SARS-CoV-2 infection. In contrast, overexpression of CLN7 led to an increase in viral load. This study provides evidence that CLN7 is involved in SARS-CoV-2 infection. This makes it a potential pharmacological target for drug development against COVID-19. Furthermore, it provides insights into the physiological function of CLN7 where still only little is known about.


Carbonic anhydrase activation profile of indole-based derivatives.

  • Elisabetta Barresi‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2021‎

Carbonic Anhydrase Activators (CAAs) could represent a novel approach for the treatment of Alzheimer's disease, ageing, and other conditions that require remedial achievement of spatial learning and memory therapy. Within a research project aimed at developing novel CAAs selective for certain isoforms, three series of indole-based derivatives were investigated. Enzyme activation assay on human CA I, II, VA, and VII isoforms revealed several effective micromolar activators, with promising selectivity profiles towards the brain-associated cytosolic isoform hCA VII. Molecular modelling studies suggested a theoretical model of the complex between hCA VII and the new activators and provide a possible explanation for their modulating as well as selectivity properties. Preliminary biological evaluations demonstrated that one of the most potent CAA 7 is not cytotoxic and is able to increase the release of the brain-derived neurotrophic factor (BDNF) from human microglial cells, highlighting its possible application in the treatment of CNS-related disorders.


Identification of a Novel p53 Modulator Endowed with Antitumoural and Antibacterial Activity through a Scaffold Repurposing Approach.

  • Elisa Nuti‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2022‎

Intracellular pathogens, such as Chlamydia trachomatis, have been recently shown to induce degradation of p53 during infection, thus impairing the protective response of the host cells. Therefore, p53 reactivation by disruption of the p53-MDM2 complex could reduce infection and restore pro-apoptotic effect of p53. Here, we report the identification of a novel MDM2 inhibitor with potential antitumoural and antibacterial activity able to reactivate p53. A virtual screening was performed on an in-house chemical library, previously synthesised for other targets, and led to the identification of a hit compound with a benzo[a]dihydrocarbazole structure, RM37. This compound induced p53 up-regulation in U343MG glioblastoma cells by blocking MDM2-p53 interaction and reduced tumour cell growth. NMR studies confirmed its ability to dissociate the MDM2-p53 complex. Notably, RM37 reduced Chlamydia infection in HeLa cells in a concentration-dependent manner and ameliorated the inflammatory status associated with infection.


Translocator protein (18kDA) (TSPO) marks mesenchymal glioblastoma cell populations characterized by elevated numbers of tumor-associated macrophages.

  • Lorraine Weidner‎ et al.
  • Acta neuropathologica communications‎
  • 2023‎

TSPO is a promising novel tracer target for positron-emission tomography (PET) imaging of brain tumors. However, due to the heterogeneity of cell populations that contribute to the TSPO-PET signal, imaging interpretation may be challenging. We therefore evaluated TSPO enrichment/expression in connection with its underlying histopathological and molecular features in gliomas. We analyzed TSPO expression and its regulatory mechanisms in large in silico datasets and by performing direct bisulfite sequencing of the TSPO promotor. In glioblastoma tissue samples of our TSPO-PET imaging study cohort, we dissected the association of TSPO tracer enrichment and protein labeling with the expression of cell lineage markers by immunohistochemistry and fluorescence multiplex stains. Furthermore, we identified relevant TSPO-associated signaling pathways by RNA sequencing.We found that TSPO expression is associated with prognostically unfavorable glioma phenotypes and that TSPO promotor hypermethylation is linked to IDH mutation. Careful histological analysis revealed that TSPO immunohistochemistry correlates with the TSPO-PET signal and that TSPO is expressed by diverse cell populations. While tumor core areas are the major contributor to the overall TSPO signal, TSPO signals in the tumor rim are mainly driven by CD68-positive microglia/macrophages. Molecularly, high TSPO expression marks prognostically unfavorable glioblastoma cell subpopulations characterized by an enrichment of mesenchymal gene sets and higher amounts of tumor-associated macrophages.In conclusion, our study improves the understanding of TSPO as an imaging marker in gliomas by unveiling IDH-dependent differences in TSPO expression/regulation, regional heterogeneity of the TSPO PET signal and functional implications of TSPO in terms of tumor immune cell interactions.


Mitochondrial and Cellular Function in Fibroblasts, Induced Neurons, and Astrocytes Derived from Case Study Patients: Insights into Major Depression as a Mitochondria-Associated Disease.

  • Iseline Cardon‎ et al.
  • International journal of molecular sciences‎
  • 2024‎

The link between mitochondria and major depressive disorder (MDD) is increasingly evident, underscored both by mitochondria's involvement in many mechanisms identified in depression and the high prevalence of MDD in individuals with mitochondrial disorders. Mitochondrial functions and energy metabolism are increasingly considered to be involved in MDD's pathogenesis. This study focused on cellular and mitochondrial (dys)function in two atypical cases: an antidepressant non-responding MDD patient ("Non-R") and another with an unexplained mitochondrial disorder ("Mito"). Skin biopsies from these patients and controls were used to generate various cell types, including astrocytes and neurons, and cellular and mitochondrial functions were analyzed. Similarities were observed between the Mito patient and a broader MDD cohort, including decreased respiration and mitochondrial function. Conversely, the Non-R patient exhibited increased respiratory rates, mitochondrial calcium, and resting membrane potential. In conclusion, the Non-R patient's data offered a new perspective on MDD, suggesting a detrimental imbalance in mitochondrial and cellular processes, rather than simply reduced functions. Meanwhile, the Mito patient's data revealed the extensive effects of mitochondrial dysfunctions on cellular functions, potentially highlighting new MDD-associated impairments. Together, these case studies enhance our comprehension of MDD.


Combined inhibition of AKT/mTOR and MDM2 enhances Glioblastoma Multiforme cell apoptosis and differentiation of cancer stem cells.

  • Simona Daniele‎ et al.
  • Scientific reports‎
  • 2015‎

The poor prognosis of Glioblastoma Multiforme (GBM) is due to a high resistance to conventional treatments and to the presence of a subpopulation of glioma stem cells (GSCs). Combination therapies targeting survival/self-renewal signals of GBM and GSCs are emerging as useful tools to improve GBM treatment. In this context, the hyperactivated AKT/mammalian target of the rapamycin (AKT/mTOR) and the inhibited wild-type p53 appear to be good candidates. Herein, the interaction between these pathways was investigated, using the novel AKT/mTOR inhibitor FC85 and ISA27, which re-activates p53 functionality by blocking its endogenous inhibitor murine double minute 2 homologue (MDM2). In GBM cells, FC85 efficiently inhibited AKT/mTOR signalling and reactivated p53 functionality, triggering cellular apoptosis. The combined therapy with ISA27 produced a synergic effect on the inhibition of cell viability and on the reactivation of p53 pathway. Most importantly, FC85 and ISA27 blocked proliferation and promoted the differentiation of GSCs. The simultaneous use of these compounds significantly enhanced GSC differentiation/apoptosis. These findings suggest that FC85 actively enhances the downstream p53 signalling and that a combination strategy aimed at inhibiting the AKT/mTOR pathway and re-activating p53 signalling is potentially effective in GBM and in GSCs.


TSPO ligand residence time: a new parameter to predict compound neurosteroidogenic efficacy.

  • Barbara Costa‎ et al.
  • Scientific reports‎
  • 2016‎

The pharmacological activation of the cholesterol-binding Translocator Protein (TSPO) leads to an increase of endogenous steroids and neurosteroids determining benefic pleiotropic effects in several pathological conditions, including anxiety disorders. The relatively poor relationship between TSPO ligand binding affinities and steroidogenic efficacies prompted us to investigate the time (Residence Time, RT) that a number of compounds with phenylindolylglyoxylamide structure (PIGAs) spends in contact with the target. Here, given the poor availability of TSPO ligand kinetic parameters, a kinetic radioligand binding assay was set up and validated for RT determination using a theoretical mathematical model successfully applied to other ligand-target systems. TSPO ligand RT was quantified and the obtained results showed a positive correlation between the period for which a drug interacts with TSPO and the compound ability to stimulate steroidogenesis. Specifically, the TSPO ligand RT significantly fitted both with steroidogenic efficacy (Emax) and with area under the dose-response curve, a parameter combining drug potency and efficacy. A positive relation between RT and anxiolytic activity of three compounds was evidenced. In conclusion, RT could be a relevant parameter to predict the steroidogenic efficacy and the in vivo anxiolytic action of new TSPO ligands.


Cytokine secretion responsiveness of lymphomonocytes following cortisol cell exposure: Sex differences.

  • Eleonora Da Pozzo‎ et al.
  • PloS one‎
  • 2018‎

The stress hormone cortisol has been recognized as a coordinator of immune response. However, its different ability to modulate the release of inflammatory mediators in males and females has not been clarified yet. Indeed, the dissection of cortisol specific actions may be difficult due to the complex hormonal and physio-pathological individual status. Herein, the release of inflammatory mediators following increasing cortisol concentrations was investigated in an in vitro model of primary human male and female lymphomonocytes. The use of a defined cellular model to assess sex differences in inflammatory cytokine secretion could be useful to exclude the effects of divergent and fluctuating sex hormone levels occurring in vivo. Herein, the cells were challenged with cortisol concentrations resembling the plasma levels achieving in physiological and stressful conditions. The production of cytokines and other molecules involved in inflammatory process was determined. In basal conditions, male cells presented higher levels of some pro-inflammatory molecules (NF-kB and IDO-1 mRNAs, IL-6 and kynurenine) than female cells. Following cortisol exposure, the levels of the pro-inflammatory cytokines, IL-6 and IL-8, were increased in male cells. Conversely, in female cells IL-6 release was unchanged and IL-8 levels were decreased. Anti-inflammatory cytokines, IL-4 and IL-10, did not change in male cells and increased in female cells. Interestingly, kynurenine levels were higher in female cells than in male cells following cortisol stimulus. These results highlighted that cortisol differently affects male and female lymphomonocytes, shifting the cytokine release in favour of a pro-inflammatory pattern in male cells and an anti-inflammatory secretion profile in female cells, opening the way to study the influences of other stressful factors involved in the neurohumoral changes occurring in the response to stress conditions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: