Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits.

  • Joshua C Randall‎ et al.
  • PLoS genetics‎
  • 2013‎

Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10(-8)), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.


A phenome-wide association study of 26 mendelian genes reveals phenotypic expressivity of common and rare variants within the general population.

  • Catherine Tcheandjieu‎ et al.
  • PLoS genetics‎
  • 2020‎

The clinical evaluation of a genetic syndrome relies upon recognition of a characteristic pattern of signs or symptoms to guide targeted genetic testing for confirmation of the diagnosis. However, individuals displaying a single phenotype of a complex syndrome may not meet criteria for clinical diagnosis or genetic testing. Here, we present a phenome-wide association study (PheWAS) approach to systematically explore the phenotypic expressivity of common and rare alleles in genes associated with four well-described syndromic diseases (Alagille (AS), Marfan (MS), DiGeorge (DS), and Noonan (NS) syndromes) in the general population. Using human phenotype ontology (HPO) terms, we systematically mapped 60 phenotypes related to AS, MS, DS and NS in 337,198 unrelated white British from the UK Biobank (UKBB) based on their hospital admission records, self-administrated questionnaires, and physiological measurements. We performed logistic regression adjusting for age, sex, and the first 5 genetic principal components, for each phenotype and each variant in the target genes (JAG1, NOTCH2 FBN1, PTPN1 and RAS-opathy genes, and genes in the 22q11.2 locus) and performed a gene burden test. Overall, we observed multiple phenotype-genotype correlations, such as the association between variation in JAG1, FBN1, PTPN11 and SOS2 with diastolic and systolic blood pressure; and pleiotropy among multiple variants in syndromic genes. For example, rs11066309 in PTPN11 was significantly associated with a lower body mass index, an increased risk of hypothyroidism and a smaller size for gestational age, all in concordance with NS-related phenotypes. Similarly, rs589668 in FBN1 was associated with an increase in body height and blood pressure, and a reduced body fat percentage as observed in Marfan syndrome. Our findings suggest that the spectrum of associations of common and rare variants in genes involved in syndromic diseases can be extended to individual phenotypes within the general population.


Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease.

  • Andrea Ganna‎ et al.
  • PLoS genetics‎
  • 2014‎

Analyses of circulating metabolites in large prospective epidemiological studies could lead to improved prediction and better biological understanding of coronary heart disease (CHD). We performed a mass spectrometry-based non-targeted metabolomics study for association with incident CHD events in 1,028 individuals (131 events; 10 y. median follow-up) with validation in 1,670 individuals (282 events; 3.9 y. median follow-up). Four metabolites were replicated and independent of main cardiovascular risk factors [lysophosphatidylcholine 18∶1 (hazard ratio [HR] per standard deviation [SD] increment = 0.77, P-value<0.001), lysophosphatidylcholine 18∶2 (HR = 0.81, P-value<0.001), monoglyceride 18∶2 (MG 18∶2; HR = 1.18, P-value = 0.011) and sphingomyelin 28∶1 (HR = 0.85, P-value = 0.015)]. Together they contributed to moderate improvements in discrimination and re-classification in addition to traditional risk factors (C-statistic: 0.76 vs. 0.75; NRI: 9.2%). MG 18∶2 was associated with CHD independently of triglycerides. Lysophosphatidylcholines were negatively associated with body mass index, C-reactive protein and with less evidence of subclinical cardiovascular disease in additional 970 participants; a reverse pattern was observed for MG 18∶2. MG 18∶2 showed an enrichment (P-value = 0.002) of significant associations with CHD-associated SNPs (P-value = 1.2×10-7 for association with rs964184 in the ZNF259/APOA5 region) and a weak, but positive causal effect (odds ratio = 1.05 per SD increment in MG 18∶2, P-value = 0.05) on CHD, as suggested by Mendelian randomization analysis. In conclusion, we identified four lipid-related metabolites with evidence for clinical utility, as well as a causal role in CHD development.


Effect of Insulin Resistance on Monounsaturated Fatty Acid Levels: A Multi-cohort Non-targeted Metabolomics and Mendelian Randomization Study.

  • Christoph Nowak‎ et al.
  • PLoS genetics‎
  • 2016‎

Insulin resistance (IR) and impaired insulin secretion contribute to type 2 diabetes and cardiovascular disease. Both are associated with changes in the circulating metabolome, but causal directions have been difficult to disentangle. We combined untargeted plasma metabolomics by liquid chromatography/mass spectrometry in three non-diabetic cohorts with Mendelian Randomization (MR) analysis to obtain new insights into early metabolic alterations in IR and impaired insulin secretion. In up to 910 elderly men we found associations of 52 metabolites with hyperinsulinemic-euglycemic clamp-measured IR and/or β-cell responsiveness (disposition index) during an oral glucose tolerance test. These implicated bile acid, glycerophospholipid and caffeine metabolism for IR and fatty acid biosynthesis for impaired insulin secretion. In MR analysis in two separate cohorts (n = 2,613) followed by replication in three independent studies profiled on different metabolomics platforms (n = 7,824 / 8,961 / 8,330), we discovered and replicated causal effects of IR on lower levels of palmitoleic acid and oleic acid. A trend for a causal effect of IR on higher levels of tyrosine reached significance only in meta-analysis. In one of the largest studies combining "gold standard" measures for insulin responsiveness with non-targeted metabolomics, we found distinct metabolic profiles related to IR or impaired insulin secretion. We speculate that the causal effects on monounsaturated fatty acid levels could explain parts of the raised cardiovascular disease risk in IR that is independent of diabetes development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: