Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors.

  • Juliane März‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Pheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet.


Intratumoral immunotherapy of murine pheochromocytoma shows no age-dependent differences in its efficacy.

  • Ondrej Uher‎ et al.
  • Frontiers in endocrinology‎
  • 2023‎

Cancer immunotherapy has shown remarkable clinical progress in recent years. Although age is one of the biggest leading risk factors for cancer development and older adults represent a majority of cancer patients, only a few new cancer immunotherapeutic interventions have been preclinically tested in aged animals. Thus, the lack of preclinical studies focused on age-dependent effect during cancer immunotherapy could lead to different therapeutic outcomes in young and aged animals and future modifications of human clinical trials. Here, we compare the efficacy of previously developed and tested intratumoral immunotherapy, based on the combination of polysaccharide mannan, toll-like receptor ligands, and anti-CD40 antibody (MBTA immunotherapy), in young (6 weeks) and aged (71 weeks) mice bearing experimental pheochromocytoma (PHEO). The presented results point out that despite faster growth of PHEO in aged mice MBTA intratumoral immunotherapy is effective approach without age dependence and could be one of the possible therapeutic interventions to enhance immune response to pheochromocytoma and perhaps other tumor types in aged and young hosts.


Identification of Isocitrate Dehydrogenase 2 (IDH2) Mutation in Carotid Body Paraganglioma.

  • Fengchao Lang‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Carotid body paragangliomas (PGLs) are rare neuroendocrine tumors that develop within the adventitia of the medial aspect of the carotid bifurcation. Carotid body PGLs comprise about 65% of head and neck paragangliomas, however, their genetic background remains elusive. In the present study, we report one case of carotid body PGL with a somatic mutation in the gene encoding isocitrate dehydrogenase 2 (IDH2). The missense mutation in IDH2 resulted in R172G amino acid substitution, which exhibits neomorphic activity and production of D-2-hydroxyglutarate.


Succinate Mediates Tumorigenic Effects via Succinate Receptor 1: Potential for New Targeted Treatment Strategies in Succinate Dehydrogenase Deficient Paragangliomas.

  • Dieter M Matlac‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Paragangliomas and pheochromocytomas (PPGLs) are chromaffin tumors associated with severe catecholamine-induced morbidities. Surgical removal is often curative. However, complete resection may not be an option for patients with succinate dehydrogenase subunit A-D (SDHx) mutations. SDHx mutations are associated with a high risk for multiple recurrent, and metastatic PPGLs. Treatment options in these cases are limited and prognosis is dismal once metastases are present. Identification of new therapeutic targets and candidate drugs is thus urgently needed. Previously, we showed elevated expression of succinate receptor 1 (SUCNR1) in SDHB PPGLs and SDHD head and neck paragangliomas. Its ligand succinate has been reported to accumulate due to SDHx mutations. We thus hypothesize that autocrine stimulation of SUCNR1 plays a role in the pathogenesis of SDHx mutation-derived PPGLs. We confirmed elevated SUCNR1 expression in SDHx PPGLs and after SDHB knockout in progenitor cells derived from a human pheochromocytoma (hPheo1). Succinate significantly increased viability of SUCNR1-transfected PC12 and ERK pathway signaling compared to control cells. Candidate SUCNR1 inhibitors successfully reversed proliferative effects of succinate. Our data reveal an unrecognized oncometabolic function of succinate in SDHx PPGLs, providing a growth advantage via SUCNR1.


An aggressive cabergoline-resistant, temozolomide-responsive macroprolactinoma due to a germline SDHB pathogenic variant in the absence of paraganglioma or pheochromocytoma.

  • Ali S Alzahrani‎ et al.
  • Frontiers in endocrinology‎
  • 2023‎

Germline succinate dehydrogenase subunit B (SDHB) pathogenic variants are characteristic of familial paraganglioma (PGL) syndrome type 4. This syndrome frequently presents with abdominal PGL and has high tendency for locally aggressive behavior and distant metastasis. The vast majority of pituitary adenomas (PAs) are sporadic. However, PAs can be part of a number of familial tumor syndromes such as multiple endocrine neoplasia type 1 (MEN 1) or more rarely in association with pheochromocytoma and PGL (referred to as 3P syndrome). Only a limited number of PAs in association with SDHB-related PGL has been reported and the vast majority occurred subsequently or simultaneously with pheochromocytoma/PGL (collectively abbreviated as PPGL). In this report, we describe a young patient who had a giant pituitary macroprolactinoma resistant to large doses of cabergoline (CBG) and external beam radiotherapy (XRT). The patient did not have personal history of PPGL but was found to carry a germline SDHB pathogenic variant.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: