Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 114 papers

Inducible Knock-Down of the Mineralocorticoid Receptor in Mice Disturbs Regulation of the Renin-Angiotensin-Aldosterone System and Attenuates Heart Failure Induced by Pressure Overload.

  • Elena Montes-Cobos‎ et al.
  • PloS one‎
  • 2015‎

Mineralocorticoid receptor (MR) inactivation in mice results in early postnatal lethality. Therefore we generated mice in which MR expression can be silenced during adulthood by administration of doxycycline (Dox). Using a lentiviral approach, we obtained two lines of transgenic mice harboring a construct that allows for regulatable MR inactivation by RNAi and concomitant expression of eGFP. MR mRNA levels in heart and kidney of inducible MR knock-down mice were unaltered in the absence of Dox, confirming the tightness of the system. In contrast, two weeks after Dox administration MR expression was significantly diminished in a variety of tissues. In the kidney, this resulted in lower mRNA levels of selected target genes, which was accompanied by strongly increased serum aldosterone and plasma renin levels as well as by elevated sodium excretion. In the healthy heart, gene expression and the amount of collagen were unchanged despite MR levels being significantly reduced. After transverse aortic constriction, however, cardiac hypertrophy and progressive heart failure were attenuated by MR silencing, fibrosis was unaffected and mRNA levels of a subset of genes reduced. Taken together, we believe that this mouse model is a useful tool to investigate the role of the MR in pathophysiological processes.


Liposomal doxorubicin for active targeting: surface modification of the nanocarrier evaluated in vitro and in vivo: challenges and prospects.

  • Judith Jakoby‎ et al.
  • Oncotarget‎
  • 2015‎

Due to the inability of classical chemotherapeutic agents to exclusively target tumor cells, these treatments are associated with severe toxicity profiles. Thus, long-circulating liposomes have been developed in the past to enhance accumulation in tumor tissue by passive targeting. Accordingly, commercially available liposomal formulations of sterically stabilized liposomal doxorubicin (Caelyx, Doxil, Lipodox) are associated with improved off-target profiles. However, these preparations are still not capable to selectively bind to target cells. Thus, in an attempt to further optimize existing treatment schemes immunoliposomes have been established to enable active targeting of tumor tissues. Recently, we have provided evidence for therapeutic efficacy of anti-IGF1R-targeted, surface modified doxorubicin loaded liposomes. Our approach involved a technique, which allows specific post-modifications of the liposomal surface by primed antibody-anchor conjugates thereby facilitating personalized approaches of commercially available liposomal drugs. In the current study, post-modification of sterically stabilized liposomal Dox was thoroughly investigated including the influence of different modification techniques (PIT, SPIT, SPIT60), lipid composition (SPC/Chol, HSPC/Chol), and buffers (HBS, SH). As earlier in vivo experiments did not take into account the presence of non-integrated ab-anchor conjugates this was included in the present study. Our experiments provide evidence that post-modification of commercially available liposomal preparations for active targeting is possible. Moreover, lyophilisation represents an applicable method to obtain a storable precursor of surface modifying antibody-anchor conjugates. Thus, these findings open up new approaches in patient individualized targeting of chemotherapeutic therapies.


MANAGEMENT OF ENDOCRINE DISEASE: Imaging for the diagnosis of malignancy in incidentally discovered adrenal masses: a systematic review and meta-analysis.

  • Jacqueline Dinnes‎ et al.
  • European journal of endocrinology‎
  • 2016‎

Adrenal masses are incidentally discovered in 5% of CT scans. In 2013/2014, 81 million CT examinations were undertaken in the USA and 5 million in the UK. However, uncertainty remains around the optimal imaging approach for diagnosing malignancy. We aimed to review the evidence on the accuracy of imaging tests for differentiating malignant from benign adrenal masses.


Computational analysis of liquid chromatography-tandem mass spectrometric steroid profiling in NCI H295R cells following angiotensin II, forskolin and abiraterone treatment.

  • Anastasios Mangelis‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2016‎

Adrenal steroid hormones, which regulate a plethora of physiological functions, are produced via tightly controlled pathways. Investigations of these pathways, based on experimental data, can be facilitated by computational modeling for calculations of metabolic rate alterations. We therefore used a model system, based on mass balance and mass reaction equations, to kinetically evaluate adrenal steroidogenesis in human adrenal cortex-derived NCI H295R cells. For this purpose a panel of 10 steroids was measured by liquid chromatographic-tandem mass spectrometry. Time-dependent changes in cell incubate concentrations of steroids - including cortisol, aldosterone, dehydroepiandrosterone and their precursors - were measured after incubation with angiotensin II, forskolin and abiraterone. Model parameters were estimated based on experimental data using weighted least square fitting. Time-dependent angiotensin II- and forskolin-induced changes were observed for incubate concentrations of precursor steroids with peaks that preceded maximal increases in aldosterone and cortisol. Inhibition of 17-alpha-hydroxylase/17,20-lyase with abiraterone resulted in increases in upstream precursor steroids and decreases in downstream products. Derived model parameters, including rate constants of enzymatic processes, appropriately quantified observed and expected changes in metabolic pathways at multiple conversion steps. Our data demonstrate limitations of single time point measurements and the importance of assessing pathway dynamics in studies of adrenal cortical cell line steroidogenesis. Our analysis provides a framework for evaluation of steroidogenesis in adrenal cortical cell culture systems and demonstrates that computational modeling-derived estimates of kinetic parameters are an effective tool for describing perturbations in associated metabolic pathways.


Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

  • Dorothee Heck‎ et al.
  • Hormones & cancer‎
  • 2015‎

Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.


Alterations in Protein Kinase A Substrate Specificity as a Potential Cause of Cushing Syndrome.

  • Kerstin Bathon‎ et al.
  • Endocrinology‎
  • 2019‎

Cushing syndrome is a severe endocrine disorder of cortisol excess associated with major metabolic and cardiovascular sequelae. We recently identified somatic mutations in PRKACA, the gene encoding the catalytic (C) α subunit of protein kinase A (PKA), as being responsible for cortisol-producing adrenocortical adenomas (CPAs), which are a major cause of Cushing syndrome. In spite of previous studies on the two initially identified mutations (L206R, 199_200insW), the mechanisms of action of the clinically highly relevant PRKACA mutations remain poorly understood. Here, by investigating a large panel of PRKACA mutations, including all those identified so far in Cushing syndrome, we unexpectedly found that not all mutations interfere with the binding of regulatory (R) subunits as previously hypothesized. Because several mutations lie in a region of PKA Cα involved in substrate recognition, we investigated their consequences on substrate specificity by quantitative phosphoproteomics. We found that all three mutations analyzed (L206R, 200_201insV, and d244-248+E249Q) cause major changes in the preference of PKA for its targets, leading to hyperphosphorylation of several PKA substrates, most notably including histone H1.4 at Ser36, which is required for and promotes mitosis. This is reflected by a ninefold hyperphosphorylation of H1.4 in CPAs carrying the L206R mutation. Thus, our findings suggest that in addition to hampering binding to R subunits, PRKACA mutations act by altering PKA substrate specificity. These findings shed light on the molecular events leading to Cushing syndrome and illustrate how mutations altering substrate specificity of a protein kinase may cause human disease.


Endothelial cells regulate β-catenin activity in adrenocortical cells via secretion of basic fibroblast growth factor.

  • Carolin Schwafertz‎ et al.
  • Molecular and cellular endocrinology‎
  • 2017‎

Endothelial cell-derived products influence the synthesis of aldosterone and cortisol in human adrenocortical cells by modulating proteins such as steroidogenic acute-regulatory (StAR) protein, steroidogenic factor (SF)-1 and CITED2. However, the potential endothelial cell-derived factors that mediate this effect are still unknown. The current study was perfomed to look into the control of β-catenin activity by endothelial cell-derived factors and to identify a mechanism by which they affect β-catenin activity in adrenocortical NCIH295R cells. Using reporter gene assays and Western blotting, we found that endothelial cell-conditioned medium (ECCM) led to nuclear translocation of β-catenin and an increase in β-catenin-dependent transcription that could be blocked by U0126, an inhibitor of the mitogen-activated protein kinase pathway. Furthermore, we found that a receptor tyrosin kinase (RTK) was involved in ECCM-induced β-catenin-dependent transcription. Through selective inhibition of RTK using Su5402, it was shown that receptors responding to basic fibroblast growth factor (bFGF) mediate the action of ECCM. Adrenocortical cells treated with bFGF showed a significant greater level of bFGF mRNA. In addition, HUVECs secrete bFGF in a density-dependent manner. In conclusion, the data suggest that endothelial cells regulate β-catenin activity in adrenocortical cells also via secretion of basic fibroblast growth factor.


CYP2W1 is highly expressed in adrenal glands and is positively associated with the response to mitotane in adrenocortical carcinoma.

  • Cristina L Ronchi‎ et al.
  • PloS one‎
  • 2014‎

Adrenocortical tumors comprise frequent adenomas (ACA) and rare carcinomas (ACC). Human cytochrome P450 2W1 (CYP2W1) is highly expressed in some cancers holding the potential to activate certain drugs into tumor cytotoxins.


Targeting heterogeneity of adrenocortical carcinoma: Evaluation and extension of preclinical tumor models to improve clinical translation.

  • Constanze Hantel‎ et al.
  • Oncotarget‎
  • 2016‎

In recent years it has been recognized that clinical translation of novel therapeutic strategies for patients with adrenocortical carcinoma (ACC) often fails. These disappointing results indicate that the currently utilized tumor models only poorly reflect relevant pathophysiology and, thereby, do not predict clinical applicability of novel pharmacological approaches. However, also the development of new preclinical ACC models has remained a challenge with only one human cell line (NCI-H295R) and one recently established human pediatric xenograft model (SJ-ACC3) being available for this highly heterogeneous malignancy. Our current study furthermore reveals a poor reproducibility of therapeutic action between different clones of the most commonly used tumor model NCI-H295R. In an attempt to broaden the current preclinical armamentarium, we aimed at the development of patient-individual tumor models. During these studies, one xenograft (MUC-1) displayed marked engraftment and sustained tumor growth. MUC-1 tumor analysis revealed highly vascularized, proliferating and SF-1 positive xenografts. In a next step, we characterized all currently available human tumor models for ACC for Ki67, SF-1 and EGF-receptor status in comparison with MUC-1-xenografts. In addition, we established a primary culture, which is now viable over 31 passages with sustained nuclear SF-1 and cytoplasmic 3βHSD immuno-positivity. Subsequent investigation of therapeutic responsiveness upon treatment with the current systemic gold standard EDP-M (etoposide, doxorubicin, cisplatin and mitotane) demonstrated maintenance of the clinically observed drug resistance for MUC-1 exclusively. In summary, we provide evidence for a novel patient-derived tumor model with the potential to improve clinical prediction of novel therapeutic strategies for patients with ACC.


Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals.

  • Wilhelm Palm‎ et al.
  • PLoS biology‎
  • 2013‎

Hedgehog (Hh) proteins control animal development and tissue homeostasis. They activate gene expression by regulating processing, stability, and activation of Gli/Cubitus interruptus (Ci) transcription factors. Hh proteins are secreted and spread through tissue, despite becoming covalently linked to sterol during processing. Multiple mechanisms have been proposed to release Hh proteins in distinct forms; in Drosophila, lipoproteins facilitate long-range Hh mobilization but also contain lipids that repress the pathway. Here, we show that mammalian lipoproteins have conserved roles in Sonic Hedgehog (Shh) release and pathway repression. We demonstrate that lipoprotein-associated forms of Hh and Shh specifically block lipoprotein-mediated pathway inhibition. We also identify a second conserved release form that is not sterol-modified and can be released independently of lipoproteins (Hh-N*/Shh-N*). Lipoprotein-associated Hh/Shh and Hh-N*/Shh-N* have complementary and synergistic functions. In Drosophila wing imaginal discs, lipoprotein-associated Hh increases the amount of full-length Ci, but is insufficient for target gene activation. However, small amounts of non-sterol-modified Hh synergize with lipoprotein-associated Hh to fully activate the pathway and allow target gene expression. The existence of Hh secretion forms with distinct signaling activities suggests a novel mechanism for generating a diversity of Hh responses.


High-Resolution Tissue Mass Spectrometry Imaging Reveals a Refined Functional Anatomy of the Human Adult Adrenal Gland.

  • Na Sun‎ et al.
  • Endocrinology‎
  • 2018‎

In the adrenal gland, neuroendocrine cells that synthesize catecholamines and epithelial cells that produce steroid hormones are united beneath a common organ capsule to function as a single stress-responsive organ. The functional anatomy of the steroid hormone-producing adrenal cortex and the catecholamine-producing medulla is ill defined at the level of small molecules. Here, we report a comprehensive high-resolution mass spectrometry imaging (MSI) map of the normal human adrenal gland. A large variety of biomolecules was accessible by matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance MSI, including nucleoside phosphates indicative of oxidative phosphorylation, sterol and steroid metabolites, intermediates of glycolysis and the tricarboxylic acid cycle, lipids, and fatty acids. Statistical clustering analyses yielded a molecularly defined adrenal anatomy of 10 distinct molecular zones including a highly structured corticomedullary interface. By incorporating pathway information, activities of carbohydrate, amino acid, and lipid metabolism as well as endocrine bioactivity were revealed to be highly spatially organized, which could be visualized as different molecularly defined zones. Together, these findings provide a molecular definition of human adult adrenal gland structure beyond classical histological anatomy.


Lack of Ubiquitin Specific Protease 8 (USP8) Mutations in Canine Corticotroph Pituitary Adenomas.

  • Silviu Sbiera‎ et al.
  • PloS one‎
  • 2016‎

Cushing's disease (CD), also known as pituitary-dependent hyperadrenocorticism, is caused by adrenocorticotropic hormone (ACTH)-secreting pituitary tumours. Affected humans and dogs have similar clinical manifestations, however, the incidence of the canine disease is thousand-fold higher. This makes the dog an obvious model for studying the pathogenesis of pituitary-dependent hyperadrenocorticism. Despite certain similarities identified at the molecular level, the question still remains whether the two species have a shared oncogenetic background. Recently, hotspot recurrent mutations in the gene encoding for ubiquitin specific protease 8 (USP8) have been identified as the main driver behind the formation of ACTH-secreting pituitary adenomas in humans. In this study, we aimed to verify whether USP8 mutations also play a role in the development of such tumours in dogs.


Glucocorticoid Excess in Patients with Pheochromocytoma Compared with Paraganglioma and Other Forms of Hypertension.

  • Georgiana Constantinescu‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2020‎

Catecholamines and adrenocortical steroids are important regulators of blood pressure. Bidirectional relationships between adrenal steroids and catecholamines have been established but whether this is relevant to patients with pheochromocytoma is unclear.


Targeting Cyclooxygenase-2 in Pheochromocytoma and Paraganglioma: Focus on Genetic Background.

  • Martin Ullrich‎ et al.
  • Cancers‎
  • 2019‎

Cyclooxygenase 2 (COX-2) is a key enzyme of the tumorigenesis-inflammation interface and can be induced by hypoxia. A pseudohypoxic transcriptional signature characterizes pheochromocytomas and paragangliomas (PPGLs) of the cluster I, mainly represented by tumors with mutations in von Hippel-Lindau (VHL), endothelial PAS domain-containing protein 1 (EPAS1), or succinate dehydrogenase (SDH) subunit genes. The aim of this study was to investigate a possible association between underlying tumor driver mutations and COX-2 in PPGLs. COX-2 gene expression and immunoreactivity were examined in clinical specimens with documented mutations, as well as in spheroids and allografts derived from mouse pheochromocytoma (MPC) cells. COX-2 in vivo imaging was performed in allograft mice. We observed significantly higher COX-2 expression in cluster I, especially in VHL-mutant PPGLs, however, no specific association between COX-2 mRNA levels and a hypoxia-related transcriptional signature was found. COX-2 immunoreactivity was present in about 60% of clinical specimens as well as in MPC spheroids and allografts. A selective COX-2 tracer specifically accumulated in MPC allografts. This study demonstrates that, although pseudohypoxia is not the major determinant for high COX-2 levels in PPGLs, COX-2 is a relevant molecular target. This potentially allows for employing selective COX-2 inhibitors as targeted chemotherapeutic agents and radiosensitizers. Moreover, available models are suitable for preclinical testing of these treatments.


β-Catenin and FGFR2 regulate postnatal rosette-based adrenocortical morphogenesis.

  • Sining Leng‎ et al.
  • Nature communications‎
  • 2020‎

Rosettes are widely used in epithelial morphogenesis during embryonic development and organogenesis. However, their role in postnatal development and adult tissue maintenance remains largely unknown. Here, we show zona glomerulosa cells in the adult adrenal cortex organize into rosettes through adherens junction-mediated constriction, and that rosette formation underlies the maturation of adrenal glomerular structure postnatally. Using genetic mouse models, we show loss of β-catenin results in disrupted adherens junctions, reduced rosette number, and dysmorphic glomeruli, whereas β-catenin stabilization leads to increased adherens junction abundance, more rosettes, and glomerular expansion. Furthermore, we uncover numerous known regulators of epithelial morphogenesis enriched in β-catenin-stabilized adrenals. Among these genes, we show Fgfr2 is required for adrenal rosette formation by regulating adherens junction abundance and aggregation. Together, our data provide an example of rosette-mediated postnatal tissue morphogenesis and a framework for studying the role of rosettes in adult zona glomerulosa tissue maintenance and function.


Effects of Germline CYP2W1*6 and CYP2B6*6 Single Nucleotide Polymorphisms on Mitotane Treatment in Adrenocortical Carcinoma: A Multicenter ENSAT Study.

  • Barbara Altieri‎ et al.
  • Cancers‎
  • 2020‎

Mitotane is the only approved drug for advanced adrenocortical carcinoma (ACC) and no biomarkers are available to predict attainment of therapeutic plasma concentrations and clinical response. Aim of the study was to evaluate the suitability of cytochrome P450(CYP)2W1 and CYP2B6 single nucleotide polymorphisms (SNPs) as biomarkers. A multicenter cohort study including 182 ACC patients (F/M = 121/61) treated with mitotane monotherapy after radical resection (group A, n = 103) or in not completely resectable, recurrent or advanced disease (group B, n = 79) was performed. CYP2W1*2, CYP2W1*6, CYP2B6*6 and CYP2B6 rs4803419 were genotyped in germline DNA. Mitotane blood levels were measured regularly. Response to therapy was evaluated as time to progression (TTP) and disease control rate (DCR). Among investigated SNPs, CYP2W1*6 and CYP2B6*6 correlated with mitotane treatment only in group B. Patients with CYP2W1*6 (n = 21) achieved less frequently therapeutic mitotane levels (>14 mg/L) than those with wild type (WT) allele (76.2% vs 51.7%, p = 0.051) and experienced shorter TTP (HR = 2.10, p = 0.019) and lower DCR (chi-square = 6.948, p = 0.008). By contrast, 55% of patients with CYP2B6*6 vs. 28.2% WT (p = 0.016) achieved therapeutic range. Combined, a higher rate of patients with CYP2W1*6WT+CYP2B6*6 (60.6%) achieved mitotane therapeutic range (p = 0.034). In not completely resectable, recurrent or advanced ACC, CYP2W1*6 SNP was associated with a reduced probability to reach mitotane therapeutic range and lower response rates, whereas CYP2B6*6 correlated with higher mitotane levels. The association of these SNPs may predict individual response to mitotane.


Deoxyguanosine kinase mutation F180S is associated with a lean phenotype in mice.

  • Cédric Francis Borreguero‎ et al.
  • International journal of obesity (2005)‎
  • 2023‎

Deoxyguanosine kinase (DGUOK) deficiency is one of the genetic causes of mitochondrial DNA depletion syndrome (MDDS) in humans, leading to the hepatocerebral or the isolated hepatic form of MDDS. Mouse models are helpful tools for the improvement of understanding of the pathophysiology of diseases and offer the opportunity to examine new therapeutic options.


Toward a Medical Gastric Bypass: Chronic Feeding Studies With Liraglutide + PYY3-36 Combination Therapy in Diet-Induced Obese Rats.

  • Ulrich Dischinger‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

Combination therapies of anorectic gut hormones partially mimic the beneficial effects of bariatric surgery. Thus far, the effects of a combined chronic systemic administration of Glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine 3-36 (PYY3-36) have not been directly compared to Roux-en-Y gastric bypass (RYGB) in a standardized experimental setting.


Prognostic Role of Targeted Methylation Analysis in Paraffin-embedded Samples of Adrenocortical Carcinoma.

  • Juliane Lippert‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2022‎

Adrenocortical carcinoma (ACC) is a rare aggressive disease with heterogeneous prognoses. Previous studies identified hypermethylation in the promoter region of specific genes to be associated with poor clinical outcome.


Definition and diagnosis of postsurgical hypoparathyroidism after thyroid surgery: meta-analysis.

  • Kathrin Nagel‎ et al.
  • BJS open‎
  • 2022‎

Postsurgical hypoparathyroidism (PH) is the most frequent complication after thyroid surgery. The aim of this systematic review and meta-analysis is to summarize a unifying definition of PH and to elucidate the best possible approach for early detection of PH.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: