Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 140 papers

Additive Anti-Tumor Effects of Lovastatin and Everolimus In Vitro through Simultaneous Inhibition of Signaling Pathways.

  • Svenja Nölting‎ et al.
  • PloS one‎
  • 2015‎

The mTORC1-inhibitor everolimus shows limited efficacy in treating patients with gastro-entero-pancreatic or pulmonary neuroendocrine tumors (NETs), and poor outcome in patients with malignant pheochromocytoma or hepatic carcinoma. We speculated that any effect may be enhanced by antogonising other signaling pathways.


Inducible Knock-Down of the Mineralocorticoid Receptor in Mice Disturbs Regulation of the Renin-Angiotensin-Aldosterone System and Attenuates Heart Failure Induced by Pressure Overload.

  • Elena Montes-Cobos‎ et al.
  • PloS one‎
  • 2015‎

Mineralocorticoid receptor (MR) inactivation in mice results in early postnatal lethality. Therefore we generated mice in which MR expression can be silenced during adulthood by administration of doxycycline (Dox). Using a lentiviral approach, we obtained two lines of transgenic mice harboring a construct that allows for regulatable MR inactivation by RNAi and concomitant expression of eGFP. MR mRNA levels in heart and kidney of inducible MR knock-down mice were unaltered in the absence of Dox, confirming the tightness of the system. In contrast, two weeks after Dox administration MR expression was significantly diminished in a variety of tissues. In the kidney, this resulted in lower mRNA levels of selected target genes, which was accompanied by strongly increased serum aldosterone and plasma renin levels as well as by elevated sodium excretion. In the healthy heart, gene expression and the amount of collagen were unchanged despite MR levels being significantly reduced. After transverse aortic constriction, however, cardiac hypertrophy and progressive heart failure were attenuated by MR silencing, fibrosis was unaffected and mRNA levels of a subset of genes reduced. Taken together, we believe that this mouse model is a useful tool to investigate the role of the MR in pathophysiological processes.


MANAGEMENT OF ENDOCRINE DISEASE: Imaging for the diagnosis of malignancy in incidentally discovered adrenal masses: a systematic review and meta-analysis.

  • Jacqueline Dinnes‎ et al.
  • European journal of endocrinology‎
  • 2016‎

Adrenal masses are incidentally discovered in 5% of CT scans. In 2013/2014, 81 million CT examinations were undertaken in the USA and 5 million in the UK. However, uncertainty remains around the optimal imaging approach for diagnosing malignancy. We aimed to review the evidence on the accuracy of imaging tests for differentiating malignant from benign adrenal masses.


Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

  • Dorothee Heck‎ et al.
  • Hormones & cancer‎
  • 2015‎

Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.


Alterations in Protein Kinase A Substrate Specificity as a Potential Cause of Cushing Syndrome.

  • Kerstin Bathon‎ et al.
  • Endocrinology‎
  • 2019‎

Cushing syndrome is a severe endocrine disorder of cortisol excess associated with major metabolic and cardiovascular sequelae. We recently identified somatic mutations in PRKACA, the gene encoding the catalytic (C) α subunit of protein kinase A (PKA), as being responsible for cortisol-producing adrenocortical adenomas (CPAs), which are a major cause of Cushing syndrome. In spite of previous studies on the two initially identified mutations (L206R, 199_200insW), the mechanisms of action of the clinically highly relevant PRKACA mutations remain poorly understood. Here, by investigating a large panel of PRKACA mutations, including all those identified so far in Cushing syndrome, we unexpectedly found that not all mutations interfere with the binding of regulatory (R) subunits as previously hypothesized. Because several mutations lie in a region of PKA Cα involved in substrate recognition, we investigated their consequences on substrate specificity by quantitative phosphoproteomics. We found that all three mutations analyzed (L206R, 200_201insV, and d244-248+E249Q) cause major changes in the preference of PKA for its targets, leading to hyperphosphorylation of several PKA substrates, most notably including histone H1.4 at Ser36, which is required for and promotes mitosis. This is reflected by a ninefold hyperphosphorylation of H1.4 in CPAs carrying the L206R mutation. Thus, our findings suggest that in addition to hampering binding to R subunits, PRKACA mutations act by altering PKA substrate specificity. These findings shed light on the molecular events leading to Cushing syndrome and illustrate how mutations altering substrate specificity of a protein kinase may cause human disease.


Somatostatin receptor expression on von Hippel-Lindau-associated hemangioblastomas offers novel therapeutic target.

  • Saman Sizdahkhani‎ et al.
  • Scientific reports‎
  • 2017‎

Von Hippel-Lindau (VHL)-associated hemangioblastomas (VHL-HB) arise in the central nervous system (CNS), and are a leading cause of morbidity and mortality in VHL disease. Currently, surgical resection is the most effective way to manage symptomatic VHL-HBs. Surgically unresectable VHL-HBs or those in frail patients are challenging problems. Therapies targeting oncologic and vascular endothelial growth factor (VEGF) pathways have failed to demonstrate tumor control. Our experience and previous reports on VHL-HB avidity to somatostatin analogues suggested somatostatin receptor (SSTR) expression in VHL-HBs, offering an alternative therapeutic strategy. We explored this possibility by demonstrating consistent histologic expression of SSTR1, 2a, 4, and 5 in VHL-HBs. We found that somatostatin analogue octreotide induces apoptosis in VHL-HB stromal cells in a dose-dependent fashion by BAX - caspase-3 pathway unrelated to canonical VHL pathway. When administered to a patient with unresectable symptomatic suprasellar hemangioblastoma, octreotide resulted in tumor volume reduction, symptom stabilization, and tumor cytopenia on repeat 68Ga-DOTA-TATE positron emission tomography (PET) within 6 months, suggesting tumor infarction. We conclude that VHL-HBs harbor multiple SSTR subtypes that offer actionable chemo-therapeutic strategy for management of symptomatic, unresectable tumors by somatostatin analogue therapy.


CYP2W1 is highly expressed in adrenal glands and is positively associated with the response to mitotane in adrenocortical carcinoma.

  • Cristina L Ronchi‎ et al.
  • PloS one‎
  • 2014‎

Adrenocortical tumors comprise frequent adenomas (ACA) and rare carcinomas (ACC). Human cytochrome P450 2W1 (CYP2W1) is highly expressed in some cancers holding the potential to activate certain drugs into tumor cytotoxins.


Bortezomib Alone and in Combination With Salinosporamid A Induces Apoptosis and Promotes Pheochromocytoma Cell Death In Vitro and in Female Nude Mice.

  • Petra Bullova‎ et al.
  • Endocrinology‎
  • 2017‎

Proteasome inhibitors have been frequently used in treating hematologic and solid tumors. They are administered individually or in combination with other regimens, to prevent severe side effects and resistance development. Because they have been shown to be efficient and are pharmaceutically available, we tested the first Food and Drug Administration-approved proteasome inhibitor bortezomib alone and in combination with another proteasome inhibitor, salinosporamid A, in pheochromocytoma cells. Pheochromocytomas/Paragangliomas (PHEOs/PGLs) are neuroendocrine tumors for which no definite cure is yet available. Therefore, drugs with a wide spectrum of mechanisms of action are being tested to identify suitable candidates for PHEO/PGL treatment. In the current study, we show that bortezomib induces PHEO cell death via the apoptotic pathway in vitro and in vivo. The combination of bortezomib with salinosporamid A exhibits additive effect on these cells and inhibits proliferation, cell migration and invasion, and angiogenesis more potently than bortezomib alone. Altogether, we suggest these proteasome inhibitors, especially bortezomib, could be potentially tested in PHEO/PGL patients who might benefit from treatment with either the inhibitors alone or in combination with other treatment options.


Low sensitivity of glucagon provocative testing for diagnosis of pheochromocytoma.

  • Jacques W M Lenders‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2010‎

Pheochromocytomas can usually be confirmed or excluded using currently available biochemical tests of catecholamine excess. Follow-up tests are, nevertheless, often required to distinguish false-positive from true-positive results. The glucagon stimulation test represents one such test; its diagnostic utility is, however, unclear.


High-Resolution Tissue Mass Spectrometry Imaging Reveals a Refined Functional Anatomy of the Human Adult Adrenal Gland.

  • Na Sun‎ et al.
  • Endocrinology‎
  • 2018‎

In the adrenal gland, neuroendocrine cells that synthesize catecholamines and epithelial cells that produce steroid hormones are united beneath a common organ capsule to function as a single stress-responsive organ. The functional anatomy of the steroid hormone-producing adrenal cortex and the catecholamine-producing medulla is ill defined at the level of small molecules. Here, we report a comprehensive high-resolution mass spectrometry imaging (MSI) map of the normal human adrenal gland. A large variety of biomolecules was accessible by matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance MSI, including nucleoside phosphates indicative of oxidative phosphorylation, sterol and steroid metabolites, intermediates of glycolysis and the tricarboxylic acid cycle, lipids, and fatty acids. Statistical clustering analyses yielded a molecularly defined adrenal anatomy of 10 distinct molecular zones including a highly structured corticomedullary interface. By incorporating pathway information, activities of carbohydrate, amino acid, and lipid metabolism as well as endocrine bioactivity were revealed to be highly spatially organized, which could be visualized as different molecularly defined zones. Together, these findings provide a molecular definition of human adult adrenal gland structure beyond classical histological anatomy.


Anthracyclines suppress pheochromocytoma cell characteristics, including metastasis, through inhibition of the hypoxia signaling pathway.

  • Ying Pang‎ et al.
  • Oncotarget‎
  • 2017‎

Pheochromocytomas (PHEOs) and paragangliomas (PGLs) are rare, neuroendocrine tumors derived from adrenal or extra-adrenal chromaffin cells, respectively. Metastases are discovered in 3-36% of patients at the time of diagnosis. Currently, only suboptimal treatment options exist. Therefore, new therapeutic compounds targeting metastatic PHEOs/PGLs are urgently needed. Here, we investigated if anthracyclines were able to suppress the progression of metastatic PHEO. We explored their effects on experimental mouse PHEO tumor cells using in vitro and in vivo models, and demonstrated that anthracyclines, particularly idarubicin (IDA), suppressed hypoxia signaling by preventing the binding of hypoxia-inducible factor 1 and 2 (HIF-1 and HIF-2) to the hypoxia response element (HRE) sites on DNA. This resulted in reduced transcriptional activation of HIF target genes, including erythropoietin (EPO), phosphoglycerate kinase 1 (PGK1), endothelin 1 (EDN1), glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and vascular endothelial growth factor (VEGFA), which consequently inhibited the growth of metastatic PHEO. Additionally, IDA downregulated hypoxia signaling by interfering with the transcriptional activation of HIF1A and HIF2A. Furthermore, our animal model demonstrated the dose-dependent suppressive effect of IDA on metastatic PHEO growth in vivo. Our results indicate that anthracyclines are prospective candidates for inclusion in metastatic PHEO/PGL therapy, especially in patients with gene mutations involved in the hypoxia signaling pathway.


Cardiometabolic risk factors and health behaviors in family caregivers.

  • Alyson Ross‎ et al.
  • PloS one‎
  • 2017‎

The purpose of this study was to compare components of cardiometabolic risk and health behaviors of 20 family caregivers of allogeneic hematopoietic stem cell transplant patients to those of age, gender, and race/ethnicity-matched controls. A prospective, repeated measures design was used to compare cardiometabolic risk and health behaviors in caregivers and controls at three time-points: pre-transplantation, discharge, and six weeks post-discharge. Measures included components of metabolic syndrome, Reynolds Risk Score, NMR serum lipoprotein particle analyses, and the Health-Promoting Lifestyle Profile II (HPLP-II). Mixed-model repeated measure analyses were used. There were no between or within group differences in LDL cholesterol, HDL cholesterol, and triglycerides. There was a significant interaction effect between time and role in large VLDL concentration (VLDL-P) (F (2, 76) = 4.36, p = .016), with the trajectory of large VLDL-P increasing over time in caregivers while remaining stable in controls. Within caregivers, VLDL particle size (VLDL-Z) was significantly larger at time-point three compared to time-points one (p = .015) and two (p = .048), and VLDL-Z was significantly larger in caregivers than in controls at time point three (p = .012). HPLP-II scores were lower in caregivers than controls at all time-points (p < .01). These findings suggest that caregiving may have a bigger impact on triglycerides than on other lipids, and it is through this pathway that caregivers may be at increased cardiometabolic risk. More sensitive measurement methods, such as NMR lipoprotein particle analyses, may be able to detect early changes in cardiometabolic risk.


Lack of Ubiquitin Specific Protease 8 (USP8) Mutations in Canine Corticotroph Pituitary Adenomas.

  • Silviu Sbiera‎ et al.
  • PloS one‎
  • 2016‎

Cushing's disease (CD), also known as pituitary-dependent hyperadrenocorticism, is caused by adrenocorticotropic hormone (ACTH)-secreting pituitary tumours. Affected humans and dogs have similar clinical manifestations, however, the incidence of the canine disease is thousand-fold higher. This makes the dog an obvious model for studying the pathogenesis of pituitary-dependent hyperadrenocorticism. Despite certain similarities identified at the molecular level, the question still remains whether the two species have a shared oncogenetic background. Recently, hotspot recurrent mutations in the gene encoding for ubiquitin specific protease 8 (USP8) have been identified as the main driver behind the formation of ACTH-secreting pituitary adenomas in humans. In this study, we aimed to verify whether USP8 mutations also play a role in the development of such tumours in dogs.


Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells.

  • Martina Bajzikova‎ et al.
  • Cell metabolism‎
  • 2019‎

Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents.


Glucocorticoid Excess in Patients with Pheochromocytoma Compared with Paraganglioma and Other Forms of Hypertension.

  • Georgiana Constantinescu‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2020‎

Catecholamines and adrenocortical steroids are important regulators of blood pressure. Bidirectional relationships between adrenal steroids and catecholamines have been established but whether this is relevant to patients with pheochromocytoma is unclear.


Gsα deficiency in the dorsomedial hypothalamus leads to obesity, hyperphagia, and reduced thermogenesis associated with impaired leptin signaling.

  • Min Chen‎ et al.
  • Molecular metabolism‎
  • 2019‎

Gsα couples multiple receptors, including the melanocortin 4 receptor (MC4R), to intracellular cAMP generation. Germline inactivating Gsα mutations lead to obesity in humans and mice. Mice with brain-specific Gsα deficiency also develop obesity with reduced energy expenditure and locomotor activity, and impaired adaptive thermogenesis, but the underlying mechanisms remain unclear.


A Transgenic Mouse Model of Pacak⁻Zhuang Syndrome with An Epas1 Gain-of-Function Mutation.

  • Herui Wang‎ et al.
  • Cancers‎
  • 2019‎

We previously identified a novel syndrome in patients characterized by paraganglioma, somatostatinoma, and polycythemia. In these patients, polycythemia occurs long before any tumor develops, and tumor removal only partially corrects polycythemia, with recurrence occurring shortly after surgery. Genetic mosaicism of gain-of-function mutations of the EPAS1 gene (encoding HIF2α) located in the oxygen degradation domain (ODD), typically p.530-532, was shown as the etiology of this syndrome. The aim of the present investigation was to demonstrate that these mutations are necessary and sufficient for the development of the symptoms. We developed transgenic mice with a gain-of-function Epas1A529V mutation (corresponding to human EPAS1A530V), which demonstrated elevated levels of erythropoietin and polycythemia, a decreased urinary metanephrine-to-normetanephrine ratio, and increased expression of somatostatin in the ampullary region of duodenum. Further, inhibition of HIF2α with its specific inhibitor PT2385 significantly reduced erythropoietin levels in the mutant mice. However, polycythemia persisted after PT2385 treatment, suggesting an alternative erythropoietin-independent mechanism of polycythemia. These findings demonstrate the vital roles of EPAS1 mutations in the syndrome development and the great potential of the Epas1A529V animal model for further pathogenesis and therapeutics studies.


Targeting Cyclooxygenase-2 in Pheochromocytoma and Paraganglioma: Focus on Genetic Background.

  • Martin Ullrich‎ et al.
  • Cancers‎
  • 2019‎

Cyclooxygenase 2 (COX-2) is a key enzyme of the tumorigenesis-inflammation interface and can be induced by hypoxia. A pseudohypoxic transcriptional signature characterizes pheochromocytomas and paragangliomas (PPGLs) of the cluster I, mainly represented by tumors with mutations in von Hippel-Lindau (VHL), endothelial PAS domain-containing protein 1 (EPAS1), or succinate dehydrogenase (SDH) subunit genes. The aim of this study was to investigate a possible association between underlying tumor driver mutations and COX-2 in PPGLs. COX-2 gene expression and immunoreactivity were examined in clinical specimens with documented mutations, as well as in spheroids and allografts derived from mouse pheochromocytoma (MPC) cells. COX-2 in vivo imaging was performed in allograft mice. We observed significantly higher COX-2 expression in cluster I, especially in VHL-mutant PPGLs, however, no specific association between COX-2 mRNA levels and a hypoxia-related transcriptional signature was found. COX-2 immunoreactivity was present in about 60% of clinical specimens as well as in MPC spheroids and allografts. A selective COX-2 tracer specifically accumulated in MPC allografts. This study demonstrates that, although pseudohypoxia is not the major determinant for high COX-2 levels in PPGLs, COX-2 is a relevant molecular target. This potentially allows for employing selective COX-2 inhibitors as targeted chemotherapeutic agents and radiosensitizers. Moreover, available models are suitable for preclinical testing of these treatments.


Targeting NRF2-Governed Glutathione Synthesis for SDHB-Mutated Pheochromocytoma and Paraganglioma.

  • Yang Liu‎ et al.
  • Cancers‎
  • 2020‎

Succinate dehydrogenase subunit B (SDHB) deficiency frequently occurs in cluster I pheochromocytomas and paragangliomas (PCPGs). SDHB-mutated PCPGs are characterized by alterations in the electron transport chain, metabolic reprogramming of the tricarboxylic cycle, and elevated levels of reactive oxygen species (ROS). We discovered that SDHB-deficient PCPG cells exhibit increased oxidative stress burden, which leads to elevated demands for glutathione metabolism. Mechanistically, nuclear factor erythroid 2-related factor 2 (NRF2)-guided glutathione de novo synthesis plays a key role in supporting cellular survival and the proliferation of SDHB-knockdown (SDHBKD) cells. NRF2 blockade not only disrupted ROS homeostasis in SDHB-deficient cells but also caused severe cytotoxicity by the accumulation of DNA oxidative damage. Brusatol, a potent NRF2 inhibitor, showed a promising effect in suppressing SDHBKD metastatic lesions in vivo, with prolonged overall survival in mice bearing PCPG allografts. Our findings highlight a novel therapeutic strategy of targeting the NRF2-driven glutathione metabolic pathway against SDHB-mutated PCPG.


Effects of Germline CYP2W1*6 and CYP2B6*6 Single Nucleotide Polymorphisms on Mitotane Treatment in Adrenocortical Carcinoma: A Multicenter ENSAT Study.

  • Barbara Altieri‎ et al.
  • Cancers‎
  • 2020‎

Mitotane is the only approved drug for advanced adrenocortical carcinoma (ACC) and no biomarkers are available to predict attainment of therapeutic plasma concentrations and clinical response. Aim of the study was to evaluate the suitability of cytochrome P450(CYP)2W1 and CYP2B6 single nucleotide polymorphisms (SNPs) as biomarkers. A multicenter cohort study including 182 ACC patients (F/M = 121/61) treated with mitotane monotherapy after radical resection (group A, n = 103) or in not completely resectable, recurrent or advanced disease (group B, n = 79) was performed. CYP2W1*2, CYP2W1*6, CYP2B6*6 and CYP2B6 rs4803419 were genotyped in germline DNA. Mitotane blood levels were measured regularly. Response to therapy was evaluated as time to progression (TTP) and disease control rate (DCR). Among investigated SNPs, CYP2W1*6 and CYP2B6*6 correlated with mitotane treatment only in group B. Patients with CYP2W1*6 (n = 21) achieved less frequently therapeutic mitotane levels (>14 mg/L) than those with wild type (WT) allele (76.2% vs 51.7%, p = 0.051) and experienced shorter TTP (HR = 2.10, p = 0.019) and lower DCR (chi-square = 6.948, p = 0.008). By contrast, 55% of patients with CYP2B6*6 vs. 28.2% WT (p = 0.016) achieved therapeutic range. Combined, a higher rate of patients with CYP2W1*6WT+CYP2B6*6 (60.6%) achieved mitotane therapeutic range (p = 0.034). In not completely resectable, recurrent or advanced ACC, CYP2W1*6 SNP was associated with a reduced probability to reach mitotane therapeutic range and lower response rates, whereas CYP2B6*6 correlated with higher mitotane levels. The association of these SNPs may predict individual response to mitotane.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: