Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Analysis of a lin-42/period Null Allele Implicates All Three Isoforms in Regulation of Caenorhabditis elegans Molting and Developmental Timing.

  • Theresa L B Edelman‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2016‎

The Caenorhabditis elegans heterochronic gene pathway regulates the relative timing of events during postembryonic development. lin-42, the worm homolog of the circadian clock gene, period, is a critical element of this pathway. lin-42 function has been defined by a set of hypomorphic alleles that cause precocious phenotypes, in which later developmental events, such as the terminal differentiation of hypodermal cells, occur too early. A subset of alleles also reveals a significant role for lin-42 in molting; larval stages are lengthened and ecdysis often fails in these mutant animals. lin-42 is a complex locus, encoding overlapping and nonoverlapping isoforms. Although existing alleles that affect subsets of isoforms have illuminated important and distinct roles for this gene in developmental timing, molting, and the decision to enter the alternative dauer state, it is essential to have a null allele to understand all of the roles of lin-42 and its individual isoforms. To remedy this problem and discover the null phenotype, we engineered an allele that deletes the entire lin-42 protein-coding region. lin-42 null mutants are homozygously viable, but have more severe phenotypes than observed in previously characterized hypomorphic alleles. We also provide additional evidence for this conclusion by using the null allele as a base for reintroducing different isoforms, showing that each isoform can provide heterochronic and molting pathway activities. Transcript levels of the nonoverlapping isoforms appear to be under coordinate temporal regulation, despite being driven by independent promoters. The lin-42 null allele will continue to be an important tool for dissecting the functions of lin-42 in molting and developmental timing.


PIE-1 Translation in the Germline Lineage Contributes to PIE-1 Asymmetry in the Early Caenorhabditis elegans Embryo.

  • Timothy J Gauvin‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2018‎

In the C. elegans embryo, the germline lineage is established through successive asymmetric cell divisions that each generate a somatic and a germline daughter cell. PIE-1 is an essential maternal factor that is enriched in embryonic germline cells and is required for germline specification. We estimated the absolute concentration of PIE-1::GFP in germline cells and find that PIE-1::GFP concentration increases by roughly 4.5 fold, from 92 nM to 424 nM, between the 1 and 4-cell stages. Previous studies have shown that the preferential inheritance of PIE-1 by germline daughter cells and the degradation of PIE-1 in somatic cells are important for PIE-1 enrichment in germline cells. In this study, we provide evidence that the preferential translation of maternal PIE-1::GFP transcripts in the germline also contributes to PIE-1::GFP enrichment. Through an RNAi screen, we identified Y14 and MAG-1 (Drosophila tsunagi and mago nashi) as regulators of embryonic PIE-1::GFP levels. We show that Y14 and MAG-1 do not regulate PIE-1 degradation, segregation or synthesis in the early embryo, but do regulate the concentration of maternally-deposited PIE-1::GFP. Taken together, or findings point to an important role for translational control in the regulation of PIE-1 levels in the germline lineage.


Polo-like Kinase Couples Cytoplasmic Protein Gradients in the C. elegans Zygote.

  • Bingjie Han‎ et al.
  • Current biology : CB‎
  • 2018‎

Intracellular protein gradients underlie essential cellular and developmental processes, but the mechanisms by which they are established are incompletely understood. During the asymmetric division of the C. elegans zygote, the RNA-binding protein MEX-5 forms an anterior-rich cytoplasmic gradient that causes the RNA-binding protein POS-1 to form an opposing, posterior-rich gradient. We demonstrate that the polo-like kinase PLK-1 mediates the repulsive coupling between MEX-5 and POS-1 by increasing the mobility of POS-1 in the anterior. PLK-1 is enriched in the anterior cytoplasm and phosphorylates POS-1, which is both necessary and sufficient to increase POS-1 mobility. Regulation of POS-1 mobility depends on both the interaction between PLK-1 and MEX-5 and between MEX-5 and RNA, suggesting that MEX-5 may recruit PLK-1 to RNA in the anterior. The low concentration of MEX-5/PLK-1 in the posterior cytoplasm provides a permissive environment for the retention of POS-1, which depends on POS-1 RNA binding. Our findings describe a novel reaction/diffusion mechanism in which the asymmetric distribution of cytoplasmic PLK-1 couples two RNA-binding protein gradients, thereby partitioning the cytoplasm.


SapTrap Assembly of Caenorhabditis elegans MosSCI Transgene Vectors.

  • Xintao Fan‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2020‎

The Mos1-mediated Single-Copy Insertion (MosSCI) method is widely used to establish stable Caenorhabditis elegans transgenic strains. Cloning MosSCI targeting plasmids can be cumbersome because it requires assembling multiple genetic elements including a promoter, a 3'UTR and gene fragments. Recently, Schwartz and Jorgensen developed the SapTrap method for the one-step assembly of plasmids containing components of the CRISPR/Cas9 system for C. elegans Here, we report on the adaptation of the SapTrap method for the efficient and modular assembly of a promoter, 3'UTR and either 2 or 3 gene fragments in a MosSCI targeting vector in a single reaction. We generated a toolkit that includes several fluorescent tags, components of the ePDZ/LOV optogenetic system and regulatory elements that control gene expression in the C. elegans germline. As a proof of principle, we generated a collection of strains that fluorescently label the endoplasmic reticulum and mitochondria in the hermaphrodite germline and that enable the light-stimulated recruitment of mitochondria to centrosomes in the one-cell worm embryo. The method described here offers a flexible and efficient method for assembly of custom MosSCI targeting vectors.


A single-nucleotide change underlies the genetic assimilation of a plastic trait.

  • Paul Vigne‎ et al.
  • Science advances‎
  • 2021‎

Genetic assimilation-the evolutionary process by which an environmentally induced phenotype is made constitutive-represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation to allow for protection or resource provisioning of offspring. Here, we report natural Caenorhabditis elegans populations harboring genetic variants expressing a derived state of near-constitutive matricidal hatching. These variants exhibit a single amino acid change (V530L) in KCNL-1, a small-conductance calcium-activated potassium channel subunit. This gain-of-function mutation causes matricidal hatching by strongly reducing the sensitivity to environmental stimuli triggering egg-laying. We show that reestablishing the canonical KCNL-1 protein in matricidal isolates is sufficient to restore canonical egg-laying. While highly deleterious in constant food environments, KCNL-1 V530L is maintained under fluctuating resource availability. A single point mutation can therefore underlie the genetic assimilation-by either genetic drift or selection-of an ancestrally plastic trait.


Engineering rules that minimize germline silencing of transgenes in simple extrachromosomal arrays in C. elegans.

  • Mohammed D Aljohani‎ et al.
  • Nature communications‎
  • 2020‎

Transgenes are prone to progressive silencing due to their structure, copy number, and genomic location. In C. elegans, repressive mechanisms are particularly strong in the germline with almost fully penetrant transgene silencing in simple extrachromosomal arrays and frequent silencing of single-copy transgene insertions. A class of non-coding DNA, Periodic An/Tn Clusters (PATCs) can prevent transgene-silencing in repressive chromatin or from small interfering RNAs (piRNAs). Here, we describe design rules (codon-optimization, intron and PATC inclusion, elevated temperature (25 °C), and vector backbone removal) for efficient germline expression from arrays in wildtype animals. We generate web-based tools to analyze PATCs and reagents for the convenient assembly of PATC-rich transgenes. An extensive collection of silencing resistant fluorescent proteins (e.g., gfp, mCherry, and tagBFP) can be used for dissecting germline regulatory elements and a set of enhanced enzymes (Mos1 transposase, Cas9, Cre, and Flp recombinases) enable efficient genetic engineering in C. elegans.


Coupling between cytoplasmic concentration gradients through local control of protein mobility in the Caenorhabditis elegans zygote.

  • Youjun Wu‎ et al.
  • Molecular biology of the cell‎
  • 2015‎

Cell polarity is characterized by the asymmetric distribution of factors at the cell cortex and in the cytoplasm. Although mechanisms that establish cortical asymmetries have been characterized, less is known about how persistent cytoplasmic asymmetries are generated. During the asymmetric division of the Caenorhabditis elegans zygote, the PAR proteins orchestrate the segregation of the cytoplasmic RNA-binding proteins MEX-5/6 to the anterior cytoplasm and PIE-1, POS-1, and MEX-1 to the posterior cytoplasm. In this study, we find that MEX-5/6 control the segregation of GFP::PIE-1, GFP::POS-1, and GFP::MEX-1 by locally increasing their mobility in the anterior cytoplasm. Remarkably, PIE-1, POS-1, and MEX-1 form gradients with distinct strengths, which correlates with differences in their responsiveness to MEX-5/6. We show that MEX-5/6 act downstream of the polarity regulators PAR-1 and PAR-3 and in a concentration-dependent manner to increase the mobility of GFP::PIE-1. These findings suggest that the MEX-5/6 concentration gradients are directly coupled to the establishment of posterior-rich PIE-1, POS-1, and MEX-1 concentration gradients via the formation of anterior-fast, posterior-slow mobility gradients.


Chromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution.

  • Bayly S Wheeler‎ et al.
  • eLife‎
  • 2016‎

Changes in chromosome number impair fitness by disrupting the balance of gene expression. Here we analyze mechanisms to compensate for changes in gene dose that accompanied the evolution of sex chromosomes from autosomes. Using single-copy transgenes integrated throughout the Caenorhabditis elegans genome, we show that expression of all X-linked transgenes is balanced between XX hermaphrodites and XO males. However, proximity of a dosage compensation complex (DCC) binding site (rex site) is neither necessary to repress X-linked transgenes nor sufficient to repress transgenes on autosomes. Thus, X is broadly permissive for dosage compensation, and the DCC acts via a chromosome-wide mechanism to balance transcription between sexes. In contrast, no analogous X-chromosome-wide mechanism balances transcription between X and autosomes: expression of compensated hermaphrodite X-linked transgenes is half that of autosomal transgenes. Furthermore, our results argue against an X-chromosome dosage compensation model contingent upon rex-directed positioning of X relative to the nuclear periphery.


Targeted and Random Transposon-Assisted Single-Copy Transgene Insertion in C. elegans.

  • Sonia El Mouridi‎ et al.
  • Methods in molecular biology (Clifton, N.J.)‎
  • 2022‎

Transgenesis in model organisms is an essential tool for determining the function of protein-coding genes and non-coding regulatory regions. In Caenorhabditis elegans, injected DNA can be propagated as multicopy extra-chromosomal arrays, but transgenes in arrays are frequently mosaic, over-expressed in some tissues, and silenced in the germline. Here, we describe methods to insert single-copy transgenes into specific genomic locations (MosSCI) or random locations (miniMos) using Mos1 transposons. Single-copy insertions allow expression at endogenous levels, expression in the germline, and identification of active and repressed regions of the genome.


Target-dependent suppression of siRNA production modulates the levels of endogenous siRNAs in the Caenorhabditis elegans germline.

  • Zoran Gajic‎ et al.
  • Development (Cambridge, England)‎
  • 2022‎

Despite the prominent role of endo-siRNAs in transposon silencing, their expression is not limited to these 'nonself' DNA elements. Transcripts of protein-coding genes ('self' DNA) in some cases also produce endo-siRNAs in yeast, plants and animals. How cells distinguish these two populations of siRNAs to prevent unwanted silencing of active genes in animals is not well understood. To address this question, we inserted various self-gene or gfp fragments into an LTR retrotransposon that produces abundant siRNAs and examined the propensity of these gene fragments to produce ectopic siRNAs in the Caenorhabditis elegans germline. We found that fragments of germline genes are generally protected from production of ectopic siRNAs. This phenomenon, which we termed 'target-directed suppression of siRNA production' (or siRNA suppression), is dependent on the germline expression of target mRNA and requires germline P-granule components. We found that siRNA suppression can also occur in naturally produced endo-siRNAs. We suggest that siRNA suppression plays an important role in regulating siRNA expression and preventing self-genes from aberrant epigenetic silencing. This article has an associated 'The people behind the papers' interview.


Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development.

  • Hsiuchen Chen‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Mitochondrial morphology is determined by a dynamic equilibrium between organelle fusion and fission, but the significance of these processes in vertebrates is unknown. The mitofusins, Mfn1 and Mfn2, have been shown to affect mitochondrial morphology when overexpressed. We find that mice deficient in either Mfn1 or Mfn2 die in midgestation. However, whereas Mfn2 mutant embryos have a specific and severe disruption of the placental trophoblast giant cell layer, Mfn1-deficient giant cells are normal. Embryonic fibroblasts lacking Mfn1 or Mfn2 display distinct types of fragmented mitochondria, a phenotype we determine to be due to a severe reduction in mitochondrial fusion. Moreover, we find that Mfn1 and Mfn2 form homotypic and heterotypic complexes and show, by rescue of mutant cells, that the homotypic complexes are functional for fusion. We conclude that Mfn1 and Mfn2 have both redundant and distinct functions and act in three separate molecular complexes to promote mitochondrial fusion. Strikingly, a subset of mitochondria in mutant cells lose membrane potential. Therefore, mitochondrial fusion is essential for embryonic development, and by enabling cooperation between mitochondria, has protective effects on the mitochondrial population.


Single-molecule dynamics of the P granule scaffold MEG-3 in the Caenorhabditis elegans zygote.

  • Youjun Wu‎ et al.
  • Molecular biology of the cell‎
  • 2019‎

During the asymmetric division of the Caenorhabditis elegans zygote, germ (P) granules are disassembled in the anterior cytoplasm and stabilized/assembled in the posterior cytoplasm, leading to their inheritance by the germline daughter cell. P granule segregation depends on MEG (maternal-effect germline defective)-3 and MEG-4, which are enriched in P granules and in the posterior cytoplasm surrounding P granules. Here we use single-molecule imaging and tracking to characterize the reaction/diffusion mechanisms that result in MEG-3::Halo segregation. We find that the anteriorly enriched RNA-binding proteins MEX (muscle excess)-5 and MEX-6 suppress the retention of MEG-3 in the anterior cytoplasm, leading to MEG-3 enrichment in the posterior. We provide evidence that MEX-5/6 may work in conjunction with PLK-1 kinase to suppress MEG-3 retention in the anterior. Surprisingly, we find that the retention of MEG-3::Halo in the posterior cytoplasm surrounding P granules does not appear to contribute significantly to the maintenance of P granule asymmetry. Rather, our findings suggest that the formation of the MEG-3 concentration gradient and the segregation of P granules are two parallel manifestations of MEG-3's response to upstream polarity cues.


Characterizing a strong pan-muscular promoter (Pmlc-1) as a fluorescent co-injection marker to select for single-copy insertions.

  • Sonia El Mouridi‎ et al.
  • microPublication biology‎
  • 2020‎

No abstract available


Modular safe-harbor transgene insertion for targeted single-copy and extrachromosomal array integration in Caenorhabditis elegans.

  • Sonia El Mouridi‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2022‎

Efficient and reproducible transgenesis facilitates and accelerates research using genetic model organisms. Here, we describe a modular safe-harbor transgene insertion (MosTI) for use in Caenorhabditis elegans which improves targeted insertion of single-copy transgenes by homology directed repair and targeted integration of extrachromosomal arrays by nonhomologous end-joining. MosTI allows easy conversion between selection markers at insertion site and a collection of universal targeting vectors with commonly used promoters and fluorophores. Insertions are targeted at three permissive safe-harbor intergenic locations and transgenes are reproducibly expressed in somatic and germ cells. Chromosomal integration is mediated by CRISPR/Cas9, and positive selection is based on a set of split markers (unc-119, hygroR, and gfp) where only animals with chromosomal insertions are rescued, resistant to antibiotics, or fluorescent, respectively. Single-copy insertion is efficient using either constitutive or heat-shock inducible Cas9 expression (25-75%) and insertions can be generated from a multiplexed injection mix. Extrachromosomal array integration is also efficient (7-44%) at modular safe-harbor transgene insertion landing sites or at the endogenous unc-119 locus. We use short-read sequencing to estimate the plasmid copy numbers for 8 integrated arrays (6-37 copies) and long-read Nanopore sequencing to determine the structure and size (5.4 Mb) of 1 array. Using universal targeting vectors, standardized insertion strains, and optimized protocols, it is possible to construct complex transgenic strains which should facilitate the study of increasingly complex biological problems in C. elegans.


Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon.

  • Christian Frøkjær-Jensen‎ et al.
  • Nature methods‎
  • 2014‎

We have generated a recombinant Mos1 transposon that can insert up to 45-kb transgenes into the Caenorhabditis elegans genome. The minimal Mos1 transposon (miniMos) is 550 bp long and inserts DNA into the genome at high frequency (~60% of injected animals). Genetic and antibiotic markers can be used for selection, and the transposon is active in C. elegans isolates and Caenorhabditis briggsae. We used the miniMos transposon to generate six universal Mos1-mediated single-copy insertion (mosSCI) landing sites that allow targeted transgene insertion with a single targeting vector into permissive expression sites on all autosomes. We also generated two collections of strains: a set of bright fluorescent insertions that are useful as dominant, genetic balancers and a set of lacO insertions to track genome position.


MosSCI and gateway compatible plasmid toolkit for constitutive and inducible expression of transgenes in the C. elegans germline.

  • Eva Zeiser‎ et al.
  • PloS one‎
  • 2011‎

Here we describe a toolkit for the production of fluorescently tagged proteins in the C. elegans germline and early embryo using Mos1-mediated single copy insertion (MosSCI) transformation. We have generated promoter and 3'UTR fusions to sequences of different fluorescent proteins yielding constructs for germline expression that are compatible with MosSCI MultiSite Gateway vectors. These vectors allow tagged transgene constructs to be inserted as single copies into known sites in the C. elegans genome using MosSCI. We also show that two C. elegans heat shock promoters (Phsp-16.2 and Phsp-16.41) can be used to induce transgene expression in the germline when inserted via MosSCI transformation. This flexible set of new vectors, available to the research community in a plasmid repository, should facilitate research focused on the C. elegans germline and early embryo.


The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria.

  • Erik E Griffin‎ et al.
  • The Journal of cell biology‎
  • 2005‎

The mitochondrial division machinery regulates mitochondrial dynamics and consists of Fis1p, Mdv1p, and Dnm1p. Mitochondrial division relies on the recruitment of the dynamin-related protein Dnm1p to mitochondria. Dnm1p recruitment depends on the mitochondrial outer membrane protein Fis1p. Mdv1p interacts with Fis1p and Dnm1p, but is thought to act at a late step during fission because Mdv1p is dispensable for Dnm1p localization. We identify the WD40 repeat protein Caf4p as a Fis1p-associated protein that localizes to mitochondria in a Fis1p-dependent manner. Caf4p interacts with each component of the fission apparatus: with Fis1p and Mdv1p through its NH2-terminal half and with Dnm1p through its COOH-terminal WD40 domain. We demonstrate that mdv1delta yeast contain residual mitochondrial fission due to the redundant activity of Caf4p. Moreover, recruitment of Dnm1p to mitochondria is disrupted in mdv1delta caf4delta yeast, demonstrating that Mdv1p and Caf4p are molecular adaptors that recruit Dnm1p to mitochondrial fission sites. Our studies support a revised model for assembly of the mitochondrial fission apparatus.


Assessment and Maintenance of Unigametic Germline Inheritance for C. elegans.

  • Karen L Artiles‎ et al.
  • Developmental cell‎
  • 2019‎

The recent work of Besseling and Bringmann (2016) identified a molecular intervention for C. elegans in which premature segregation of maternal and paternal chromosomes in the fertilized oocyte can produce viable animals exhibiting a non-Mendelian inheritance pattern. Overexpression in embryos of a single protein regulating chromosome segregation (GPR-1) provides a germline derived clonally from a single parental gamete. We present a collection of strains and cytological assays to consistently generate and track non-Mendelian inheritance. These tools allow reproducible and high-frequency (>80%) production of non-Mendelian inheritance, the facile and simultaneous homozygosis for all nuclear chromosomes in a single generation, the precise exchange of nuclear and mitochondrial genomes between strains, and the assessments of non-canonical mitosis events. We show the utility of these strains by demonstrating a rapid assessment of cell lineage requirements (AB versus P1) for a set of genes (lin-2, lin-3, lin-12, and lin-31) with roles in C. elegans vulval development.


Reprogramming the piRNA pathway for multiplexed and transgenerational gene silencing in C. elegans.

  • Monika Priyadarshini‎ et al.
  • Nature methods‎
  • 2022‎

Single-guide RNAs can target exogenous CRISPR-Cas proteins to unique DNA locations, enabling genetic tools that are efficient, specific and scalable. Here we show that short synthetic guide Piwi-interacting RNAs (piRNAs) (21-nucleotide sg-piRNAs) expressed from extrachromosomal transgenes can, analogously, reprogram the endogenous piRNA pathway for gene-specific silencing in the hermaphrodite germline, sperm and embryos of Caenorhabditis elegans. piRNA-mediated interference ('piRNAi') is more efficient than RNAi and can be multiplexed, and auxin-mediated degradation of the piRNA-specific Argonaute PRG-1 allows conditional gene silencing. Target-specific silencing results in decreased messenger RNA levels, amplification of secondary small interfering RNAs and repressive chromatin modifications. Short (300 base pairs) piRNAi transgenes amplified from arrayed oligonucleotide pools also induce silencing, potentially making piRNAi highly scalable. We show that piRNAi can induce transgenerational epigenetic silencing of two endogenous genes (him-5 and him-8). Silencing is inherited for four to six generations after target-specific sg-piRNAs are lost, whereas depleting PRG-1 leads to essentially permanent epigenetic silencing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: