Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways.

  • Lauran Reyniers‎ et al.
  • Journal of neurochemistry‎
  • 2014‎

Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinson's disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1- and LRRK2-specific cellular processes by identifying their distinct interacting proteins. A protein microarray-based interaction screen was performed with recombinant 3xFlag-LRRK1 and 3xFlag-LRRK2 and, in parallel, co-immunoprecipitation followed by mass spectrometry was performed from SH-SY5Y neuroblastoma cell lines stably expressing 3xFlag-LRRK1 or 3xFlag-LRRK2. We identified a set of LRRK1- and LRRK2-specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14-3-3 consensus binding motifs. To assess the functional relevance of these interactions, SH-SY5Y-LRRK1 and -LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14-3-3 binding, or with EGF, an EGF-R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins. LRRK1 and LRRK2 (leucine-rich repeat kinase) interaction partners were identified by two different protein-protein interaction screens. These confirmed epidermal growth factor receptor (EGR-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. Functional analysis of these interactions and the pathways they mediate shows that LRRK1 and LRRK2 signaling do not intersect, reflective of the differential role of both LRRKs in Parkinson's disease.


Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant.

  • Veronique Daniëls‎ et al.
  • Journal of neurochemistry‎
  • 2011‎

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent known cause of autosomal dominant Parkinson's disease. The LRRK2 gene encodes a Roco protein featuring a Ras of complex proteins (ROC) GTPase and a kinase domain linked by the C-terminal of ROC (COR) domain. Here, we explored the effects of the Y1699C pathogenic LRRK2 mutation in the COR domain on GTPase activity and interactions within the catalytic core of LRRK2. We observed a decrease in GTPase activity for LRRK2 Y1699C comparable to the decrease observed for the R1441C pathogenic mutant and the T1348N dysfunctional mutant. To study the underlying mechanism, we explored the dimerization in the catalytic core of LRRK2. ROC-COR dimerization was significantly weakened by the Y1699C or R1441C/G mutation. Using a competition assay, we demonstrated that the intra-molecular ROC : COR interaction is favoured over ROC : ROC dimerization. Interestingly, the intra-molecular ROC : COR interaction was strengthened by the Y1699C mutation. This is supported by a 3D homology model of the ROC-COR tandem of LRRK2, showing that Y1699 is positioned at the intra-molecular ROC : COR interface. In conclusion, our data provides mechanistic insight into the mode of action of the Y1699C LRRK2 mutant: the Y1699C substitution, situated at the intra-molecular ROC : COR interface, strengthens the intra-molecular ROC : COR interaction, thereby locally weakening the dimerization of LRRK2 at the ROC-COR tandem domain resulting in decreased GTPase activity.


Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain.

  • Laura Civiero‎ et al.
  • Journal of neurochemistry‎
  • 2015‎

Leucine-rich repeat kinase 2 (LRRK2) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21-activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. p21-activated kinases are serine-threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post-mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock-out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2-mediated pathophysiology. We propose p21-activated kinase 6 (PAK6) as a novel interactor of leucine-rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2-linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.


Chronic chemogenetic stimulation of the anterior olfactory nucleus reduces newborn neuron survival in the adult mouse olfactory bulb.

  • Sarah Libbrecht‎ et al.
  • Journal of neurochemistry‎
  • 2021‎

During adult rodent life, newborn neurons are added to the olfactory bulb (OB) in a tightly controlled manner. Upon arrival in the OB, input synapses from the local bulbar network and the higher olfactory cortex precede the formation of functional output synapses, indicating a possible role for these regions in newborn neuron survival. An interplay between the environment and the piriform cortex in the regulation of newborn neuron survival has been suggested. However, the specific network and the neuronal cell types responsible for this effect have not been elucidated. Furthermore, the role of the other olfactory cortical areas in this process is not known. Here we demonstrate that pyramidal neurons in the mouse anterior olfactory nucleus, the first cortical area for odor processing, have a key role in the survival of newborn neurons. Using DREADD (Designer Receptors Exclusively Activated by Designer Drugs) technology, we applied chronic stimulation to the anterior olfactory nucleus and observed a decrease in newborn neurons in the OB through induction of apoptosis. These findings provide further insight into the network regulating neuronal survival in adult neurogenesis and strengthen the importance of the surrounding network for sustained integration of new neurons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: