Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,309 papers

MiR-215 Is Induced Post-transcriptionally via HIF-Drosha Complex and Mediates Glioma-Initiating Cell Adaptation to Hypoxia by Targeting KDM1B.

  • Jing Hu‎ et al.
  • Cancer cell‎
  • 2016‎

The hypoxic tumor microenvironment serves as a niche for maintaining the glioma-initiating cells (GICs) that are critical for glioblastoma (GBM) occurrence and recurrence. Here, we report that hypoxia-induced miR-215 is vital for reprograming GICs to fit the hypoxic microenvironment via suppressing the expression of an epigenetic regulator KDM1B and modulating activities of multiple pathways. Interestingly, biogenesis of miR-215 and several miRNAs is accelerated post-transcriptionally by hypoxia-inducible factors (HIFs) through HIF-Drosha interaction. Moreover, miR-215 expression correlates inversely with KDM1B while correlating positively with HIF1α and GBM progression in patients. These findings reveal a direct role of HIF in regulating miRNA biogenesis and consequently activating the miR-215-KDM1B-mediated signaling required for GIC adaptation to hypoxia.


Sex-specific increase in susceptibility to metabolic syndrome in adult offspring after prenatal ethanol exposure with post-weaning high-fat diet.

  • Zheng He‎ et al.
  • Scientific reports‎
  • 2015‎

Prenatal ethanol exposure (PEE) is an established risk factor for intrauterine growth retardation. The present study was designed to determine whether PEE can increase the susceptibility of high-fat diet (HFD)-induced metabolic syndrome (MS) in adult offspring in a sex-specific manner, based on a generalized linear model analysis. Pregnant Wistar rats were administered ethanol (4 g/kg.d) from gestational day 11 until term delivery. All offspring were fed either a normal diet or a HFD after weaning and were sacrificed at postnatal week 20, and blood samples were collected. Results showed that PEE reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels but enhanced serum glucose, insulin, insulin resistant index (IRI), triglyceride and total cholesterol (TC) concentrations. Moreover, the analysis showed interactions among PEE, HFD and sex. In the PEE offspring, HFD aggravated the decrease in ACTH and corticosterone levels and further increased serum glucose, insulin, triglyceride and TC levels. The changes of serum ACTH, glucose and IRI levels in the female HFD rats were greater than those in the male HFD rats. Our findings suggest that PEE enhances the susceptibility to MS induced by HFD in a sex-specific manner, which might be primarily associated with the neuroendocrine metabolic programming by PEE.


Mitogen-inducible gene-6 partly mediates the inhibitory effects of prenatal dexamethasone exposure on endochondral ossification in long bones of fetal rats.

  • Xianrong Zhang‎ et al.
  • British journal of pharmacology‎
  • 2016‎

Prenatal exposure to dexamethasone slows down fetal linear growth and bone mineralization but the regulatory mechanism remains unknown. Here we assessed how dexamethasone regulates bone development in the fetus.


Role of eosinophils and apoptosis in PDIMs/PGLs deficient mycobacterium elimination in adult zebrafish.

  • Xinhua Huang‎ et al.
  • Developmental and comparative immunology‎
  • 2016‎

The cell wall lipids phthiocerol dimycocerosates (PDIMs) and its structurally-related compound, phenolic glycolipids (PGLs) are major virulence factors of mycobacterium, as shown by the reduced growth of PDIMs/PGLs deficient mutants in various animal models. PDIMs/PGLs play active roles in modulating host immune responses. However, the cellular and molecular mechanisms of how PDIMs/PGLs deficient mutant was eliminated in vivo are still elusive. Our aim was to investigate what host immune responses have effect on mycobacterium elimination in vivo. Using microarray, we find PDIMs/PGLs modulate divergent host responses, including chemotaxis and focal adhesion's downstream pathway and apoptosis. We examine these two host responses by Diff-Quik stain, coupled with transmission electron microscopy and TUNEL stain respectively. The ultrastructure observation showed that eosinophils appeared in WT-infected zebrafish at day 1, however eosinophils arrived was delayed to day 7 in PDIMs/PGLs-deficient mutant-infected animals. More intriguingly, apoptosis was markedly increased in PDIMs/PGLs-mutant infected zebrafish at day 1 after infection, compared to WT-infected fishes at this time. However, apoptosis trend was fully reversed by day 7, with increased apoptosis were detected in WT-infected zebrafish compared with the PDIMs/PGLs-deficient mutant, especially more apoptosis within the granuloma. This study shows that the anti-apoptotic effects of PDIMs/PGLs and the recruitment of eosinophils in tissue during the early infection in zebrafish might promote bacterium growth in vivo.


5-Hydroxymethylcytosine Remodeling Precedes Lineage Specification during Differentiation of Human CD4(+) T Cells.

  • Colm E Nestor‎ et al.
  • Cell reports‎
  • 2016‎

5-methylcytosine (5mC) is converted to 5-hydroxymethylcytosine (5hmC) by the TET family of enzymes as part of a recently discovered active DNA de-methylation pathway. 5hmC plays important roles in regulation of gene expression and differentiation and has been implicated in T cell malignancies and autoimmunity. Here, we report early and widespread 5mC/5hmC remodeling during human CD4(+) T cell differentiation ex vivo at genes and cell-specific enhancers with known T cell function. We observe similar DNA de-methylation in CD4(+) memory T cells in vivo, indicating that early remodeling events persist long term in differentiated cells. Underscoring their important function, 5hmC loci were highly enriched for genetic variants associated with T cell diseases and T-cell-specific chromosomal interactions. Extensive functional validation of 22 risk variants revealed potentially pathogenic mechanisms in diabetes and multiple sclerosis. Our results support 5hmC-mediated DNA de-methylation as a key component of CD4(+) T cell biology in humans, with important implications for gene regulation and lineage commitment.


Proteomics-based identification of VDAC1 as a tumor promoter in cervical carcinoma.

  • Changlin Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

We used oxidative isotope-coded affinity tags (OxICAT) to investigate the global redox status of proteins in human papillomavirus (HPV)-related cervical cancer cells, in order to identify a potential target for gene therapy. Voltage-dependent anion channel 1 (VDAC1) was found to be highly oxidized in HPV-positive cervical cancer cells. VDAC1 expression correlated significantly with the invasion of cervical cancer, the grade of cervical intraepithelial neoplasia (CIN) and the expression of HPV16 E7 in CIN. Knockdown of VDAC1 in cell lines increased the rate of apoptosis, while overexpression of the VDAC1 (respectively) partly reversed the effect. Thus, VDAC1 may promote the malignant progression of HPV-related disease, and treatments designed to suppress VDAC1 could prevent the progression of HPV-induced cervical disease.


Compositions, Formation Mechanism, and Neuroprotective Effect of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang.

  • Chenze Zhang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

Compounds in the form of precipitation (CFP) are universally formed during the decocting of Chinese prescriptions, such as Huang-Lian-Jie-Du-Tang (HLJDT). The formation rate of HLJDT CFP even reached 2.63% ± 0.20%. The identification by liquid chromatography mass spectrometry (LC-MS(n)) proved that the main chemical substances of HLJDT CFP are baicalin and berberine, which is coincident with the theory that the CFP might derive from interaction between acidic and basic compounds. To investigate the formation mechanism of HLJDT CFP, baicalin and berberine were selected to synthesize a simulated precipitation and then the baicalin-berberine complex was obtained. Results indicated that the melting point of the complex interposed between baicalin and berberine, and the UV absorption, was different from the mother material. In addition, ¹H-NMR integral and high-resolution mass spectroscopy (HR-MS) can validate that the binding ratio was 1:1. Compared with baicalin, the chemical shifts of H and C on glucuronide had undergone significant changes by ¹H-, (13)C-NMR, which proved that electron transfer occurred between the carboxylic proton and the lone pair of electrons on the N atom. Both HLJDT CFP and the baicalin-berberine complex showed protective effects against cobalt chloride-induced neurotoxicity in differentiated PC12 cells. It is a novel idea, studying the material foundation of CFP in Chinese prescriptions.


Silica Nanoparticles Target a Wnt Signal Transducer for Degradation and Impair Embryonic Development in Zebrafish.

  • Hongyang Yi‎ et al.
  • Theranostics‎
  • 2016‎

Many types of biocompatible nanomaterials have proven of low cytotoxicity and hold great promise for various applications in nanomedicine. Whereas they generally do not cause apparent organ toxicity or tissue damage in adult animals, it is yet to determine their biological consequences in more general contexts. In this study, we investigate how silica nanoparticles (NPs) affect cellular activities and functions under several physiological or pathological conditions. Although silica NPs are generally regarded as "inert" nanocarriers and widely employed in biomedical studies, we find that they actively affect Wnt signaling in various types of cell lines, diminishing its anti-adipogenic effect in preadipocytes and pro-invasive effect in breast cancer cells, and more significantly, impair Wnt-regulated embryonic development in Zebrafish. We further demonstrate that intracellular silica NPs block Wnt signal transduction in a way resembling signaling molecules. Specifically, silica NPs target the Dvl protein, a key component of Wnt signaling cascade, for lysosomal degradation. As Wnt signaling play significant roles in embryonic development and adipogenesis, the observed physiological effects beyond toxicity imply potential risk of obesity, or developmental defects in somitogenesis and osteogenesis upon exposure to silica NPs. In addition, given the clinical implications of Wnt signaling in tumorigenesis and cancer metastasis, our work also establishes for the first time a molecular link between nanomaterials and the Wnt signaling pathway, which opens new door for novel applications of unmodified silica NPs in targeted therapy for cancers and other critical illness.


Association of nonsteroidal anti-inflammatory drugs and aspirin use and the risk of head and neck cancers: a meta-analysis of observational studies.

  • Lanhua Tang‎ et al.
  • Oncotarget‎
  • 2016‎

Nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin, have emerged as the potential chemopreventive agents for a number of cancer types, however, previous studies of head and neck cancers (HNC) have yielded inconclusive results. We performed a meta-analysis of observational studies to quantitatively assess the association between NSAIDs use and the risk for HNC.


Brain protection against ischemic stroke using choline as a new molecular bypass treatment.

  • Xin Jin‎ et al.
  • Acta pharmacologica Sinica‎
  • 2015‎

To determine whether administration of choline could attenuate brain injury in a rat model of ischemic stroke and the underlying mechanisms.


Nomogram basing pre-treatment parameters predicting early response for locally advanced rectal cancer with neoadjuvant chemotherapy alone: a subgroup efficacy analysis of FOWARC study.

  • Jianwei Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

To develop an accurate model with pre-treatment parameters to predict tumor regression and down-staging in locally advanced rectal cancer patients, basing the cohort of preoperative chemotherapy alone in FOWARC study.


Dendritic cells pulsed with Hsp70 and HBxAg induce specific antitumor immune responses in hepatitis B virus-associated hepatocellular carcinoma.

  • Hui Wang‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Previous studies have drawn attention to dendritic cell (DC) vaccines; particularly the application of the tumor-associated antigen-targeted DC vaccine. The present study analyzed DCs derived from a normal individual and pulsed the cells with heat shock protein 70 peptide (Hsp70) and/or hepatitis B virus x antigen (HBxAg), a hepatocellular carcinoma (HCC)-associated antigen. It was then investigated whether this method of vaccination induced strong therapeutic antitumor immunity. The results revealed that the Hsp70/HBxAg complex-activated phenotype improves the functional maturation of DCs compared with using Hsp70 or HBxAg alone. Compared with either Hsp70 or HBxAg alone, matured DCs pulsed with the Hsp70/HBxAg complex stimulated a high level of autologous T-cell proliferation and induced HCC-specific cytotoxic T lymphocytes, which specifically killed HCC cells through a major histocompatibility complex class I mechanism. These results indicated that a vaccination therapy using DCs co-pulsed with the Hsp70/HBxAg complex is an effective strategy for immunotherapy and may offer a useful approach to protect against HCC.


Characterizing Variation of Branch Angle and Genome-Wide Association Mapping in Rapeseed (Brassica napus L.).

  • Jia Liu‎ et al.
  • Frontiers in plant science‎
  • 2016‎

Changes in the rapeseed branch angle alter plant architecture, allowing more efficient light capture as planting density increases. In this study, a natural population of rapeseed was grown in three environments and evaluated for branch angle trait to characterize their phenotypic patterns and genotype with a 60K Brassica Infinium SNP array. Significant phenotypic variation was observed from 20 to 70°. As a result, 25 significant quantitative trait loci (QTL) associated with branch angle were identified on chromosomes A2, A3, A7, C3, C5, and C7 by the MLM model in TASSEL 4.0. Orthologs of the functional candidate genes involved in branch angle were identified. Among the key QTL, the peak SNPs were close to the key orthologous genes BnaA.Lazy1 and BnaC.Lazy1 on A3 and C3 homologous genome blocks. With the exception of Lazy (LA) orthologous genes, SQUMOSA PROMOTER BINDING PROTEIN LIKE 14 (SPL14) and an auxin-responsive GRETCHEN HAGEN 3 (GH3) genes from Arabidopsis thaliana were identified close to two clusters of SNPs on the A7 and C7 chromosomes. These findings on multiple novel loci and candidate genes of branch angle will be useful for further understanding and genetic improvement of plant architecture in rapeseed.


Identify Melatonin as a Novel Therapeutic Reagent in the Treatment of 1-Bromopropane(1-BP) Intoxication.

  • Yongpeng Xu‎ et al.
  • Medicine‎
  • 2016‎

1-Bromopropane (1-BP) has been used as an alternative for fluoride compounds and 1-BP intoxication may involve lung, liver, and central neural system (CNS). Our previous studies showed that 1-BP impaired memory ability by compromising antioxidant cellular defenses. Melatonin is a powerful endogenousantioxidant, and the objective of this study was to explore the therapeutic role of melatonin in the treatment of 1-BP intoxication. Rats were intragastrically treated with 1-BP with or without melatonin, and then sacrificed on 27th day after 1-BP administration. The Morris water maze (MWM) test was used to evaluate the spatial learning and memory ability of the experimental animals, and NeuN staining was performed to assess neuron loss in hippocampus. We found that rats treated with 1-BP spent more time and swam longer distance before landing on the hidden platform with a comparable swimming speed, which was markedly mitigated by the pretreatment with melatonin in a concentration-dependent manner. In addition, 1-BP-induced notable decrease in neuron population in hippocampus by promoting apoptosis, and melatonin pretreatment attenuated those changes in brain. The GSH/GSSG ratio was proportionately decreased and heme oxygenase 1 was increased in the rats exposed to 1-BP (Figure 6), and administration of melatonin restored them. Meanwhile, MDA, the level of lipid peroxidation product, was significantly increased upon exposed to 1-BP, which was significantly attenuated by melatonin pretreatment, indicating that administration of 1-BP could interfere with redox homeostasis of brain in rat, and such 1-BP-induced biomedical changes were reversed by treatment with melatonin.We conclude that treatment with melatonin attenuates 1-BP-induced CNS toxicity through its ROS scavenging effect.


Cytotoxic Rocaglate Derivatives from Leaves of Aglaia perviridis.

  • Fa-Liang An‎ et al.
  • Scientific reports‎
  • 2016‎

Rocaglates are a series of structurally complex secondary metabolites with considerable cytotoxicity that have been isolated from plants of the Aglaia genus (Meliaceae). A new rocaglate (aglapervirisin A, 1) and its eight new biosynthetic precursors of rocaglate (aglapervirisins B-J, 2-9) together with five known compounds, were isolated from the leaves of Aglaia perviridis. Their structures were elucidated based on a joint effort of spectroscopic methods [IR, UV, MS, ECD, 1D- and 2D-NMR, HRESIMS], chemical conversion and single-crystal X-ray diffraction. Among these isolates, three (1, 10-11) were silvestrols, a rare subtype rocaglates, exhibiting notable cytotoxicity against four human tumor cell lines, with IC50 values between 8.0 and 15.0 nM. Aglapervirisin A (1) induces cell cycle arrest at the G2/M-phase boundary at concentration 10 nM accompanied by reductions in the expression levels of Cdc2 and Cdc25C in HepG2 cells after 72h co-incubation, and further induces the apoptosis of HepG2 cells at concentrations over 160 nM.


Resveratrol Protects PC12 Cell against 6-OHDA Damage via CXCR4 Signaling Pathway.

  • Jing Zhang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2015‎

Resveratrol, herbal nonflavonoid polyphenolic compound naturally derived from grapes, has long been acknowledged to possess extensive biological and pharmacological properties including antioxidant and anti-inflammatory ones and may exert a neuroprotective effect on neuronal damage in neurodegenerative diseases. However, the underlying molecular mechanisms remain undefined. In the present study, we intended to investigate the neuroprotective effects of resveratrol against 6-OHDA-induced neurotoxicity of PC12 cells and further explore the possible mechanisms involved. For this purpose, PC12 cells were exposed to 6-OHDA in the presence of resveratrol (0, 12.5, 25, and 50 μM). The results showed that resveratrol increased cell viability, alleviated the MMP reduction, and reduced the number of apoptotic cells as measured by MTT assay, JC-1 staining, and Hoechst/PI double staining (all p < 0.01). Immunofluorescent staining and Western blotting revealed that resveratrol averts 6-OHDA induced CXCR4 upregulation (p < 0.01). Our results demonstrated that resveratrol could effectively protect PC12 cells from 6-OHDA-induced oxidative stress and apoptosis via CXCR4 signaling pathway.


Mapping Quantitative Trait Loci of Resistance to Tomato Spotted Wilt Virus and Leaf Spots in a Recombinant Inbred Line Population of Peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022.

  • Pawan Khera‎ et al.
  • PloS one‎
  • 2016‎

Peanut is vulnerable to a range of diseases, such as Tomato spotted wilt virus (TSWV) and leaf spots which will cause significant yield loss. The most sustainable, economical and eco-friendly solution for managing peanut diseases is development of improved cultivars with high level of resistance. We developed a recombinant inbred line population from the cross between SunOleic 97R and NC94022, named as the S-population. An improved genetic linkage map was developed for the S-population with 248 marker loci and a marker density of 5.7 cM/loci. This genetic map was also compared with the physical map of diploid progenitors of tetraploid peanut, resulting in an overall co-linearity of about 60% with the average co-linearity of 68% for the A sub-genome and 47% for the B sub-genome. The analysis using the improved genetic map and multi-season (2010-2013) phenotypic data resulted in the identification of 48 quantitative trait loci (QTLs) with phenotypic variance explained (PVE) from 3.88 to 29.14%. Of the 48 QTLs, six QTLs were identified for resistance to TSWV, 22 QTLs for early leaf spot (ELS) and 20 QTLs for late leaf spot (LLS), which included four, six, and six major QTLs (PVE larger than 10%) for each disease, respectively. A total of six major genomic regions (MGR) were found to have QTLs controlling more than one disease resistance. The identified QTLs and resistance gene-rich MGRs will facilitate further discovery of resistance genes and development of molecular markers for these important diseases.


Growth differentiation factor 15 contributes to cancer-associated fibroblasts-mediated chemo-protection of AML cells.

  • Yuanmei Zhai‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2016‎

Chemo-resistance is still a major obstacle in efforts to overcome acute myeloid leukemia (AML). An emerging concept has proposed that interactions between the bone marrow (BM) microenvironment and leukemia cells reduce the sensitivity of the leukemia cells to chemotherapy. As an important element of the tumor microenvironment, the cancer-associated fibroblasts (CAFs) are considered to be activated modulators in the chemo-resistance of many solid tumors. But their contribution to AML has yet to be fully understood. Here we report a critical role for CAFs which were thought to be a survival and chemo-protective factor for leukemia cells.


Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis).

  • Yuwei Xie‎ et al.
  • Scientific reports‎
  • 2016‎

Reintroduction of the threatened red-crowned crane has been unsuccessful. Although gut microbiota correlates with host health, there is little information on gut microbiota of cranes under different conservation strategies. The study examined effects of captivity, artificial breeding and life stage on gut microbiota of red-crown cranes. The gut microbiotas of wild, captive adolescent, captive adult, artificially bred adolescent and artificially bred adult cranes were characterized by next-generation sequencing of 16S rRNA gene amplicons. The gut microbiotas were dominated by three phyla: Firmicutes (62.9%), Proteobacteria (29.9%) and Fusobacteria (9.6%). Bacilli dominated the 'core' community consisting of 198 operational taxonomic units (OTUs). Both captivity and artificial breeding influenced the structures and diversities microbiota of the gut. Especially, wild cranes had distinct compositions of gut microbiota from captive and artificially bred cranes. The greatest alpha diversity was found in captive cranes, while wild cranes had the least. According to the results of ordination analysis, influences of captivity and artificial breeding were greater than that of life stage. Overall, captivity and artificial breeding influenced the gut microbiota, potentially due to changes in diet, vaccination, antibiotics and living conditions. Metagenomics can serve as a supplementary non-invasive screening tool for disease control.


RNF216 contributes to proliferation and migration of colorectal cancer via suppressing BECN1-dependent autophagy.

  • Hui Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Originally identified as an E3 ligase regulating toll-like receptor (TLR) signaling, ring finger protein 216 (RNF216) also plays an essential role in autophagy, which is fundamental to cellular homeostasis. Autophagy dysfunction leads to an array of pathological events, including tumor formation. In this study, we found that RNF216 was upregulated in human colorectal cancer (CRC) tissues and cell lines, and was associated with progression of CRC. RNF216 promoted CRC cell proliferation and migration in vitro and in vivo, largely by enhancing proteasomal degradation of BECN1, a key autophagy regulator and tumor suppressor. RNF216 restricted CRC cell autophagy through BECN1 inhibition under nutritional starvation conditions. RNF216 knockdown increased the autophagy, limiting CRC cell proliferation and migration. Moreover, BECN1 knockdown or autophagy inhibition restored proliferation and migration of RNF216-knockdown CRC cells. Collectively, our results suggested that RNF216 promoted CRC cell proliferation and migration by negatively regulating BECN1-dependent autophagy. This makes RNF216 as a potential biomarker and novel therapeutic target for inhibiting CRC development and progression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: