Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 122 papers

Mismatch in epitope specificities between IFNγ inflamed and uninflamed conditions leads to escape from T lymphocyte killing in melanoma.

  • Katherine Woods‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2016‎

A current focus in cancer treatment is to broaden responses to immunotherapy. One reason these therapies may prove inadequate is that T lymphocytes fail to recognize the tumor due to differences in immunogenic epitopes presented by the cancer cells under inflammatory or non-inflammatory conditions. The antigen processing machinery of the cell, the proteasome, cleaves proteins into peptide epitopes for presentation on MHC complexes. Immunoproteasomes in inflammatory melanomas, and in antigen presenting cells of the immune system, are enzymatically different to standard proteasomes expressed by tumors with no inflammation. This corresponds to alterations in protein cleavage between proteasome subtypes, and a disparate repertoire of MHC-presented epitopes.


Sequence-Structure-Function Classification of a Catalytically Diverse Oxidoreductase Superfamily in Mycobacteria.

  • F Hafna Ahmed‎ et al.
  • Journal of molecular biology‎
  • 2015‎

The deazaflavin cofactor F420 enhances the persistence of mycobacteria during hypoxia, oxidative stress, and antibiotic treatment. However, the identities and functions of the mycobacterial enzymes that utilize F420 under these conditions have yet to be resolved. In this work, we used sequence similarity networks to analyze the distribution of the largest F420-dependent protein family in mycobacteria. We show that these enzymes are part of a larger split β-barrel enzyme superfamily (flavin/deazaflavin oxidoreductases, FDORs) that include previously characterized pyridoxamine/pyridoxine-5'-phosphate oxidases and heme oxygenases. We show that these proteins variously utilize F420, flavin mononucleotide, flavin adenine dinucleotide, and heme cofactors. Functional annotation using phylogenetic, structural, and spectroscopic methods revealed their involvement in heme degradation, biliverdin reduction, fatty acid modification, and quinone reduction. Four novel crystal structures show that plasticity in substrate binding pockets and modifications to cofactor binding motifs enabled FDORs to carry out a variety of functions. This systematic classification and analysis provides a framework for further functional analysis of the roles of FDORs in mycobacterial pathogenesis and persistence.


Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities.

  • Markus V Lindh‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundances than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating an adjustment effect. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, a priming effect resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial ecosystem process rates.


An open-source computational and data resource to analyze digital maps of immunopeptidomes.

  • Etienne Caron‎ et al.
  • eLife‎
  • 2015‎

We present a novel mass spectrometry-based high-throughput workflow and an open-source computational and data resource to reproducibly identify and quantify HLA-associated peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry (MS). This study represents the first community-based effort to develop a robust platform for the reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA molecules, an essential step towards the design of efficient immunotherapies.


Mixotrophy drives niche expansion of verrucomicrobial methanotrophs.

  • Carlo R Carere‎ et al.
  • The ISME journal‎
  • 2017‎

Aerobic methanotrophic bacteria have evolved a specialist lifestyle dependent on consumption of methane and other short-chain carbon compounds. However, their apparent substrate specialism runs contrary to the high relative abundance of these microorganisms in dynamic environments, where the availability of methane and oxygen fluctuates. In this work, we provide in situ and ex situ evidence that verrucomicrobial methanotrophs are mixotrophs. Verrucomicrobia-dominated soil communities from an acidic geothermal field in Rotokawa, New Zealand rapidly oxidised methane and hydrogen simultaneously. We isolated and characterised a verrucomicrobial strain from these soils, Methylacidiphilum sp. RTK17.1, and showed that it constitutively oxidises molecular hydrogen. Genomic analysis confirmed that this strain encoded two [NiFe]-hydrogenases (group 1d and 3b), and biochemical assays revealed that it used hydrogen as an electron donor for aerobic respiration and carbon fixation. While the strain could grow heterotrophically on methane or autotrophically on hydrogen, it grew optimally by combining these metabolic strategies. Hydrogen oxidation was particularly important for adaptation to methane and oxygen limitation. Complementary to recent findings of hydrogenotrophic growth by Methylacidiphilum fumariolicum SolV, our findings illustrate that verrucomicrobial methanotrophs have evolved to simultaneously utilise hydrogen and methane from geothermal sources to meet energy and carbon demands where nutrient flux is dynamic. This mixotrophic lifestyle is likely to have facilitated expansion of the niche space occupied by these microorganisms, allowing them to become dominant in geothermally influenced surface soils. Genes encoding putative oxygen-tolerant uptake [NiFe]-hydrogenases were identified in all publicly available methanotroph genomes, suggesting hydrogen oxidation is a general metabolic strategy in this guild.


A proof-reading mechanism for non-proteinogenic amino acid incorporation into glycopeptide antibiotics.

  • Milda Kaniusaite‎ et al.
  • Chemical science‎
  • 2019‎

Non-ribosomal peptide biosynthesis produces highly diverse natural products through a complex cascade of enzymatic reactions that together function with high selectivity to produce bioactive peptides. The modification of non-ribosomal peptide synthetase (NRPS)-bound amino acids can introduce significant structural diversity into these peptides and has exciting potential for biosynthetic redesign. However, the control mechanisms ensuring selective modification of specific residues during NRPS biosynthesis have previously been unclear. Here, we have characterised the incorporation of the non-proteinogenic amino acid 3-chloro-β-hydroxytyrosine during glycopeptide antibiotic (GPA) biosynthesis. Our results demonstrate that the modification of this residue by trans-acting enzymes is controlled by the selectivity of the upstream condensation domain responsible for peptide synthesis. A proofreading thioesterase works together with this process to ensure that effective peptide biosynthesis proceeds even when the selectivity of key amino acid activation domains within the NRPS is low. Furthermore, the exchange of condensation domains with altered amino acid specificities allows the modification of such residues within NRPS biosynthesis to be controlled, which will doubtless prove important for reengineering of these assembly lines. Taken together, our results indicate the importance of the complex interplay of NRPS domains and trans-acting enzymes to ensure effective GPA biosynthesis, and in doing so reveals a process that is mechanistically comparable to the hydrolytic proofreading function of tRNA synthetases in ribosomal protein synthesis.


A Natural Peptide Antigen within the Plasmodium Ribosomal Protein RPL6 Confers Liver TRM Cell-Mediated Immunity against Malaria in Mice.

  • Ana Maria Valencia-Hernandez‎ et al.
  • Cell host & microbe‎
  • 2020‎

Liver-resident memory CD8+ T (TRM) cells remain in and constantly patrol the liver to elicit rapid immunity upon antigen encounter and can mediate efficient protection against liver-stage Plasmodium infection. This finding has prompted the development of immunization strategies where T cells are activated in the spleen and then trapped in the liver to form TRM cells. Here, we identify PbRPL6120-127, a H2-Kb-restricted epitope from the putative 60S ribosomal protein L6 (RPL6) of Plasmodium berghei ANKA, as an optimal antigen for endogenous liver TRM cell generation and protection against malaria. A single dose vaccination targeting RPL6 provided effective and prolonged sterilizing immunity against high dose sporozoite challenges. Expressed throughout the parasite life cycle, across Plasmodium species, and highly conserved, RPL6 exhibits strong translation potential as a vaccine candidate. This is further advocated by the identification of a broadly conserved, immunogenic HLA-A∗02:01-restricted epitope in P. falciparum RPL6.


Study design, rationale and methods of the Revitalising Informal Settlements and their Environments (RISE) study: a cluster randomised controlled trial to evaluate environmental and human health impacts of a water-sensitive intervention in informal settlements in Indonesia and Fiji.

  • Karin Leder‎ et al.
  • BMJ open‎
  • 2021‎

Increasing urban populations have led to the growth of informal settlements, with contaminated environments linked to poor human health through a range of interlinked pathways. Here, we describe the design and methods for the Revitalising Informal Settlements and their Environments (RISE) study, a transdisciplinary randomised trial evaluating impacts of an intervention to upgrade urban informal settlements in two Asia-Pacific countries.


Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf.

  • Clara Martínez-Pérez‎ et al.
  • Nature communications‎
  • 2022‎

Throughout coastal Antarctica, ice shelves separate oceanic waters from sunlight by hundreds of meters of ice. Historical studies have detected activity of nitrifying microorganisms in oceanic cavities below permanent ice shelves. However, little is known about the microbial composition and pathways that mediate these activities. In this study, we profiled the microbial communities beneath the Ross Ice Shelf using a multi-omics approach. Overall, beneath-shelf microorganisms are of comparable abundance and diversity, though distinct composition, relative to those in the open meso- and bathypelagic ocean. Production of new organic carbon is likely driven by aerobic lithoautotrophic archaea and bacteria that can use ammonium, nitrite, and sulfur compounds as electron donors. Also enriched were aerobic organoheterotrophic bacteria capable of degrading complex organic carbon substrates, likely derived from in situ fixed carbon and potentially refractory organic matter laterally advected by the below-shelf waters. Altogether, these findings uncover a taxonomically distinct microbial community potentially adapted to a highly oligotrophic marine environment and suggest that ocean cavity waters are primarily chemosynthetically-driven systems.


Adapting an Ergosterol Extraction Method with Marine Yeasts for the Quantification of Oceanic Fungal Biomass.

  • Katherine Salazar Alekseyeva‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2021‎

Ergosterol has traditionally been used as a proxy to estimate fungal biomass as it is almost exclusively found in fungal lipid membranes. Ergosterol determination has been mostly used for fungal samples from terrestrial, freshwater, salt marsh- and mangrove-dominated environments or to describe fungal degradation of plant matter. In the open ocean, however, the expected concentrations of ergosterol are orders of magnitude lower than in terrestrial or macrophyte-dominated coastal systems. Consequently, the fungal biomass in the open ocean remains largely unknown. Recent evidence based on microscopy and -omics techniques suggests, however, that fungi contribute substantially to the microbial biomass in the oceanic water column, highlighting the need to accurately determine fungal biomass in the open ocean. We performed ergosterol extractions of an oceanic fungal isolate (Rhodotorula sphaerocarpa) with biomass concentrations varying over nine orders of magnitude. While after the initial chloroform-methanol extraction ~87% of the ergosterol was recovered, a second extraction recovered an additional ~10%. Testing this extraction method on samples collected from the open Atlantic Ocean, we successfully determined ergosterol concentrations as low as 0.12 pM. Thus, this highly sensitive method is well suited for measuring fungal biomass from open ocean waters, including deep-sea environments.


Extracellular Enzymatic Activities of Oceanic Pelagic Fungal Strains and the Influence of Temperature.

  • Katherine Salazar Alekseyeva‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2022‎

Although terrestrial and aquatic fungi are well-known decomposers of organic matter, the role of marine fungi remains largely unknown. Recent studies based on omics suggest that marine fungi potentially play a major role in elemental cycles. However, there is very limited information on the diversity of extracellular enzymatic activities performed by pelagic fungi in the ocean and how these might be affected by community composition and/or critical environmental parameters such as temperature. In order to obtain information on the potential metabolic activity of marine fungi, extracellular enzymatic activities (EEA) were investigated. Five marine fungal species belonging to the most abundant pelagic phyla (Ascomycota and Basidiomycota) were grown at 5 °C and 20 °C, and fluorogenic enzymatic assays were performed using six substrate analogues for the hydrolysis of carbohydrates (β-glucosidase, β-xylosidase, and N-acetyl-β-D-glucosaminidase), amino acids (leucine aminopeptidase), and of organic phosphorus (alkaline phosphatase) and sulfur compounds (sulfatase). Remarkably, all fungal strains were capable of hydrolyzing all the offered substrates. However, the hydrolysis rate (Vmax) and half-saturation constant (Km) varied among the fungal strains depending on the enzyme type. Temperature had a strong impact on the EEAs, resulting in Q10 values of up to 6.1 and was species and substrate dependent. The observed impact of temperature on fungal EEA suggests that warming of the global ocean might alter the contribution of pelagic fungi in marine biogeochemical cycles.


Molecular hydrogen in seawater supports growth of diverse marine bacteria.

  • Rachael Lappan‎ et al.
  • Nature microbiology‎
  • 2023‎

Molecular hydrogen (H2) is an abundant and readily accessible energy source in marine systems, but it remains unknown whether marine microbial communities consume this gas. Here we use a suite of approaches to show that marine bacteria consume H2 to support growth. Genes for H2-uptake hydrogenases are prevalent in global ocean metagenomes, highly expressed in metatranscriptomes and found across eight bacterial phyla. Capacity for H2 oxidation increases with depth and decreases with oxygen concentration, suggesting that H2 is important in environments with low primary production. Biogeochemical measurements of tropical, temperate and subantarctic waters, and axenic cultures show that marine microbes consume H2 supplied at environmentally relevant concentrations, yielding enough cell-specific power to support growth in bacteria with low energy requirements. Conversely, our results indicate that oxidation of carbon monoxide (CO) primarily supports survival. Altogether, H2 is a notable energy source for marine bacteria and may influence oceanic ecology and biogeochemistry.


Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes.

  • Zihao Zhao‎ et al.
  • Science advances‎
  • 2020‎

Heterotrophic prokaryotes express extracellular hydrolytic enzymes to cleave large organic molecules before taking up the hydrolyzed products. According to foraging theory, extracellular enzymes should be cell associated in dilute systems such as deep sea habitats, but secreted into the surrounding medium in diffusion-limited systems. However, extracellular enzymes in the deep sea are found mainly dissolved in ambient water rather than cell associated. In order to resolve this paradox, we conducted a global survey of peptidases and carbohydrate-active enzymes (CAZymes), two key enzyme groups initiating organic matter assimilation, in an integrated metagenomics, metatranscriptomics, and metaproteomics approach. The abundance, percentage, and diversity of genes encoding secretory processes, i.e., dissolved enzymes, consistently increased from epipelagic to bathypelagic waters, indicating that organic matter cleavage, and hence prokaryotic metabolism, is mediated mainly by particle-associated prokaryotes releasing their extracellular enzymes into diffusion-limited particles in the bathypelagic realm.


The RSC (Remodels the Structure of Chromatin) complex of Candida albicans shows compositional divergence with distinct roles in regulating pathogenic traits.

  • Vinutha K Balachandra‎ et al.
  • PLoS genetics‎
  • 2020‎

Regulation of gene expression programs is crucial for the survival of microbial pathogens in host environments and for their ability to cause disease. Here we investigated the epigenetic regulator RSC (Remodels the Structure of Chromatin) in the most prevalent human fungal pathogen Candida albicans. Biochemical analysis showed that CaRSC comprises 13 subunits and contains two novel non-essential members, which we named Nri1 and Nri2 (Novel RSC Interactors) that are exclusive to the CTG clade of Saccharomycotina. Genetic analysis showed distinct essentiality of C. albicans RSC subunits compared to model fungal species suggesting functional and structural divergence of RSC functions in this fungal pathogen. Transcriptomic and proteomic profiling of a conditional mutant of the essential catalytic subunit gene STH1 demonstrated global roles of RSC in C. albicans biology, with the majority of growth-related processes affected, as well as mis-regulation of genes involved in morphotype switching, host-pathogen interaction and adaptive fitness. We further assessed the functions of non-essential CaRSC subunits, showing that the novel subunit Nri1 and the bromodomain subunit Rsc4 play roles in filamentation and stress responses; and also interacted at the genetic level to regulate cell viability. Consistent with these roles, Rsc4 is required for full virulence of C. albicans in the murine model of systemic infection. Taken together, our data builds the first comprehensive study of the composition and roles of RSC in C. albicans, showing both conserved and distinct features compared to model fungal systems. The study illuminates how C. albicans uses RSC-dependent transcriptional regulation to respond to environmental signals and drive survival fitness and virulence in mammals.


Mycobacteria Tolerate Carbon Monoxide by Remodeling Their Respiratory Chain.

  • Katherine Bayly‎ et al.
  • mSystems‎
  • 2021‎

Carbon monoxide (CO) gas is infamous for its acute toxicity. This toxicity predominantly stems from its tendency to form carbonyl complexes with transition metals, thus inhibiting the heme-prosthetic groups of proteins, including respiratory terminal oxidases. While CO has been proposed as an antibacterial agent, the evidence supporting its toxicity toward bacteria is equivocal, and its cellular targets remain poorly defined. In this work, we investigate the physiological response of mycobacteria to CO. We show that Mycobacterium smegmatis is highly resistant to the toxic effects of CO, exhibiting only minor inhibition of growth when cultured in its presence. We profiled the proteome of M. smegmatis during growth in CO, identifying strong induction of cytochrome bd oxidase and members of the dos regulon, but relatively few other changes. We show that the activity of cytochrome bd oxidase is resistant to CO, whereas cytochrome bcc-aa 3 oxidase is strongly inhibited by this gas. Consistent with these findings, growth analysis shows that M. smegmatis lacking cytochrome bd oxidase displays a significant growth defect in the presence of CO, while induction of the dos regulon appears to be unimportant for adaptation to CO. Altogether, our findings indicate that M. smegmatis has considerable resistance to CO and benefits from respiratory flexibility to withstand its inhibitory effects.IMPORTANCE Carbon monoxide has an infamous reputation as a toxic gas, and it has been suggested that it has potential as an antibacterial agent. Despite this, how bacteria resist its toxic effects is not well understood. In this study, we investigated how CO influences growth, proteome, and aerobic respiration of wild-type and mutant strains of Mycobacterium smegmatis We show that this bacterium produces the CO-resistant cytochrome bd oxidase to tolerate poisoning of its CO-sensitive complex IV homolog. Further, we show that aside from this remodeling of its respiratory chain, M. smegmatis makes few other functional changes to its proteome, suggesting it has a high level of inherent resistance to CO.


Protease-associated import systems are widespread in Gram-negative bacteria.

  • Rhys Grinter‎ et al.
  • PLoS genetics‎
  • 2019‎

Bacteria have evolved sophisticated uptake machineries in order to obtain the nutrients required for growth. Gram-negative plant pathogens of the genus Pectobacterium obtain iron from the protein ferredoxin, which is produced by their plant hosts. This iron-piracy is mediated by the ferredoxin uptake system (Fus), a gene cluster encoding proteins that transport ferredoxin into the bacterial cell and process it proteolytically. In this work we show that gene clusters related to the Fus are widespread in bacterial species. Through structural and biochemical characterisation of the distantly related Fus homologues YddB and PqqL from Escherichia coli, we show that these proteins are analogous to components of the Fus from Pectobacterium. The membrane protein YddB shares common structural features with the outer membrane ferredoxin transporter FusA, including a large extracellular substrate binding site. PqqL is an active protease with an analogous periplasmic localisation and iron-dependent expression to the ferredoxin processing protease FusC. Structural analysis demonstrates that PqqL and FusC share specific features that distinguish them from other members of the M16 protease family. Taken together, these data provide evidence that protease associated import systems analogous to the Fus are widespread in Gram-negative bacteria.


Disease-modifying effects of sodium selenate in a model of drug-resistant, temporal lobe epilepsy.

  • Pablo M Casillas-Espinosa‎ et al.
  • eLife‎
  • 2023‎

There are no pharmacological disease-modifying treatments with an enduring effect to mitigate the seizures and comorbidities of established chronic temporal lobe epilepsy (TLE). This study aimed to evaluate for disease modifying effects of sodium selenate treatment in the chronically epileptic rat post-status epilepticus (SE) model of drug-resistant TLE. Wistar rats underwent kainic acid-induced SE or sham. Ten-weeks post-SE, animals received sodium selenate, levetiracetam, or vehicle subcutaneousinfusion continuously for 4 weeks. To evaluate the effects of the treatments, one week of continuous video-EEG was acquired before, during, and 4, 8 weeks post-treatment, followed by behavioral tests. Targeted and untargeted proteomics and metabolomics were performed on post-mortem brain tissue to identify potential pathways associated with modified disease outcomes. Telomere length was investigated as a novel surrogate marker of epilepsy disease severity in our current study. The results showed that sodium selenate treatment was associated with mitigation of measures of disease severity at 8 weeks post-treatment cessation; reducing the number of spontaneous seizures (p< 0.05), cognitive dysfunction (p< 0.05), and sensorimotor deficits (p< 0.01). Moreover, selenate treatment was associated with increased protein phosphatase 2A (PP2A) expression, reduced hyperphosphorylated tau, and reversed telomere length shortening (p< 0.05). Network medicine integration of multi-omics/pre-clinical outcomes identified protein-metabolite modules positively correlated with TLE. Our results provide evidence that treatment with sodium selenate results in a sustained disease-modifying effect in chronically epileptic rats in the post-KA SE model of TLE, including improved comorbid learning and memory deficits.


Variants in SART3 cause a spliceosomopathy characterised by failure of testis development and neuronal defects.

  • Katie L Ayers‎ et al.
  • Nature communications‎
  • 2023‎

Squamous cell carcinoma antigen recognized by T cells 3 (SART3) is an RNA-binding protein with numerous biological functions including recycling small nuclear RNAs to the spliceosome. Here, we identify recessive variants in SART3 in nine individuals presenting with intellectual disability, global developmental delay and a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Knockdown of the Drosophila orthologue of SART3 reveals a conserved role in testicular and neuronal development. Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro. Collectively, these findings suggest that bi-allelic SART3 variants underlie a spliceosomopathy which we tentatively propose be termed INDYGON syndrome (Intellectual disability, Neurodevelopmental defects and Developmental delay with 46,XY GONadal dysgenesis). Our findings will enable additional diagnoses and improved outcomes for individuals born with this condition.


The katanin A-subunits KATNA1 and KATNAL1 act co-operatively in mammalian meiosis and spermiogenesis to achieve male fertility.

  • Jessica E M Dunleavy‎ et al.
  • Development (Cambridge, England)‎
  • 2023‎

Katanins, a class of microtubule-severing enzymes, are potent M-phase regulators in oocytes and somatic cells. How the complex and evolutionarily crucial, male mammalian meiotic spindle is sculpted remains unknown. Here, using multiple single and double gene knockout mice, we reveal that the canonical katanin A-subunit KATNA1 and its close paralogue KATNAL1 together execute multiple aspects of meiosis. We show KATNA1 and KATNAL1 collectively regulate the male meiotic spindle, cytokinesis and midbody abscission, in addition to diverse spermatid remodelling events, including Golgi organisation, and acrosome and manchette formation. We also define KATNAL1-specific roles in sperm flagellum development, manchette regulation and sperm-epithelial disengagement. Finally, using proteomic approaches, we define the KATNA1, KATNAL1 and KATNB1 mammalian testis interactome, which includes a network of cytoskeletal and vesicle trafficking proteins. Collectively, we reveal that the presence of multiple katanin A-subunit paralogs in mammalian spermatogenesis allows for 'customised cutting' via neofunctionalisation and protective buffering via gene redundancy.


The African killifish: A short-lived vertebrate model to study the biology of sarcopenia and longevity.

  • Avnika A Ruparelia‎ et al.
  • Aging cell‎
  • 2024‎

Sarcopenia, the age-related decline in muscle function, places a considerable burden on health-care systems. While the stereotypic hallmarks of sarcopenia are well characterized, their contribution to muscle wasting remains elusive, which is partly due to the limited availability of animal models. Here, we have performed cellular and molecular characterization of skeletal muscle from the African killifish-an extremely short-lived vertebrate-revealing that while many characteristics deteriorate with increasing age, supporting the use of killifish as a model for sarcopenia research, some features surprisingly reverse to an "early-life" state in the extremely old stages. This suggests that in extremely old animals, there may be mechanisms that prevent further deterioration of skeletal muscle, contributing to an extension of life span. In line with this, we report a reduction in mortality rates in extremely old killifish. To identify mechanisms for this phenomenon, we used a systems metabolomics approach, which revealed that during aging there is a striking depletion of triglycerides, mimicking a state of calorie restriction. This results in the activation of mitohormesis, increasing Sirt1 levels, which improves lipid metabolism and maintains nutrient homeostasis in extremely old animals. Pharmacological induction of Sirt1 in aged animals was sufficient to induce a late life-like metabolic profile, supporting its role in life span extension in vertebrate populations that are naturally long-lived. Collectively, our results demonstrate that killifish are not only a novel model to study the biological processes that govern sarcopenia, but they also provide a unique vertebrate system to dissect the regulation of longevity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: