Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Protease-associated import systems are widespread in Gram-negative bacteria.

  • Rhys Grinter‎ et al.
  • PLoS genetics‎
  • 2019‎

Bacteria have evolved sophisticated uptake machineries in order to obtain the nutrients required for growth. Gram-negative plant pathogens of the genus Pectobacterium obtain iron from the protein ferredoxin, which is produced by their plant hosts. This iron-piracy is mediated by the ferredoxin uptake system (Fus), a gene cluster encoding proteins that transport ferredoxin into the bacterial cell and process it proteolytically. In this work we show that gene clusters related to the Fus are widespread in bacterial species. Through structural and biochemical characterisation of the distantly related Fus homologues YddB and PqqL from Escherichia coli, we show that these proteins are analogous to components of the Fus from Pectobacterium. The membrane protein YddB shares common structural features with the outer membrane ferredoxin transporter FusA, including a large extracellular substrate binding site. PqqL is an active protease with an analogous periplasmic localisation and iron-dependent expression to the ferredoxin processing protease FusC. Structural analysis demonstrates that PqqL and FusC share specific features that distinguish them from other members of the M16 protease family. Taken together, these data provide evidence that protease associated import systems analogous to the Fus are widespread in Gram-negative bacteria.


The RSC (Remodels the Structure of Chromatin) complex of Candida albicans shows compositional divergence with distinct roles in regulating pathogenic traits.

  • Vinutha K Balachandra‎ et al.
  • PLoS genetics‎
  • 2020‎

Regulation of gene expression programs is crucial for the survival of microbial pathogens in host environments and for their ability to cause disease. Here we investigated the epigenetic regulator RSC (Remodels the Structure of Chromatin) in the most prevalent human fungal pathogen Candida albicans. Biochemical analysis showed that CaRSC comprises 13 subunits and contains two novel non-essential members, which we named Nri1 and Nri2 (Novel RSC Interactors) that are exclusive to the CTG clade of Saccharomycotina. Genetic analysis showed distinct essentiality of C. albicans RSC subunits compared to model fungal species suggesting functional and structural divergence of RSC functions in this fungal pathogen. Transcriptomic and proteomic profiling of a conditional mutant of the essential catalytic subunit gene STH1 demonstrated global roles of RSC in C. albicans biology, with the majority of growth-related processes affected, as well as mis-regulation of genes involved in morphotype switching, host-pathogen interaction and adaptive fitness. We further assessed the functions of non-essential CaRSC subunits, showing that the novel subunit Nri1 and the bromodomain subunit Rsc4 play roles in filamentation and stress responses; and also interacted at the genetic level to regulate cell viability. Consistent with these roles, Rsc4 is required for full virulence of C. albicans in the murine model of systemic infection. Taken together, our data builds the first comprehensive study of the composition and roles of RSC in C. albicans, showing both conserved and distinct features compared to model fungal systems. The study illuminates how C. albicans uses RSC-dependent transcriptional regulation to respond to environmental signals and drive survival fitness and virulence in mammals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: