Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Activity of the growth hormone-releasing hormone antagonist MIA602 and its underlying mechanisms of action in sarcoidosis-like granuloma.

  • Chongxu Zhang‎ et al.
  • Clinical & translational immunology‎
  • 2021‎

Growth hormone-releasing hormone (GHRH) is a potent stimulator of growth hormone (GH) secretion from the pituitary gland. Although GHRH is essential for the growth of immune cells, the regulatory effects of its antagonist in granulomatous disease remain unknown.


Mycobacterium abscessus-Bronchial Epithelial Cells Cross-Talk Through Type I Interferon Signaling.

  • Chongxu Zhang‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Introduction:Mycobacteria are aerobic non-motile organisms with lipid rich, hydrophobic cell walls that render them resistant to antibiotics. While there are over 150 different species of NTM, Mycobacterium avium complex (MAC) and Mycobacterium abscessus (MAB) are two of the most common culprits of pulmonary infection. MAB has been found to be most common in southeastern United States (Florida to Texas) and the third most rapidly growing NTM infection. It is responsible for chronic lung infections. Mycobacterial cell wall components initiate the interaction between bacteria and host. The reaction between bronchial epithelia and components in the envelope of mycobacterial cell wall is poorly understood. Methods: A lung-on-membrane model was developed with normal human bronchial epithelial (NHBE) cells re-differentiated at the air-liquid interface (ALI) and human endothelial cells on a transwell® polyester membrane. Microparticles from MAB cell walls were developed by an inhouse protocol and added to the ALI side of lung model. NHBE cells were harvested at day 3. RNA was isolated and analyzed with RNASeq. NHBE cells were lysed and protein assay was performed with western blot. We tested whether lung INF-alpha expression would increase in mice treated with intratracheal MAB cell wall particles. A paired t-test is used to compare two population means using GraphPad Prism 7 software. Results: RNAseq analysis identified 1759 differentially expressed genes between NHBE cells challenged with and without MAB microparticles with FDR < 0.5. 410 genes had a 2.5-fold change (FC) or greater. NHBE cells exposure to MAB microparticles significantly enriched the IFN I signaling pathway. Protein overexpression of IFN I family (2'-5'-Oligoadenylate Synthetase 1, Interferon-induced GTP-binding protein Mx1, Interferon-stimulated gene 15) was found in bronchial epithelial cells following exposure to MAB cell wall microparticles. IFN-α protein and gene expressions were significantly increased in mice lung challenged with microparticles in comparison with controls. Conclusion: These data strongly support the role of Type I IFN in cross-talk between NHBE cells and MAB. They also suggest that initiating immune response by NHBE cells may play a central role in innate immunity. Furthermore, this study underscores the importance of mycobacterial cell wall in initiating innate immune response.


Anti-inflammatory Properties of the Alpha-Melanocyte-Stimulating Hormone in Models of Granulomatous Inflammation.

  • Abdolrazagh Hashemi Shahraki‎ et al.
  • Lung‎
  • 2022‎

Alpha-melanocyte stimulating hormone (α-MSH) is known to have anti-inflammatory effects. However, the anti-inflammatory properties of α-MSH on normal bronchial epithelial cells are largely unknown, especially in the context of in vitro sarcoidosis models.


Anti-inflammatory effects of α-MSH through p-CREB expression in sarcoidosis like granuloma model.

  • Chongxu Zhang‎ et al.
  • Scientific reports‎
  • 2020‎

Lung inflammation due to sarcoidosis is characterized by a complex cascade of immunopathologic events, including leukocyte recruitment and granuloma formation. α-melanocyte stimulating hormone (α-MSH) is a melanocortin signaling peptide with anti-inflammatory properties. We aimed to evaluate the effects of α-MSH in a novel in vitro sarcoidosis model. An in vitro sarcoidosis-like granuloma model was developed by challenging peripheral blood mononuclear cells (PBMCs) derived from patients with confirmed treatment-naïve sarcoidosis with microparticles generated from Mycobacterium abscessus cell walls. Unchallenged PBMCsand developed granulomas were treated daily with 10 μM α-MSH or saline as control. Cytokine concentrations in supernatants of culture and in cell extracts were measured using Illumina multiplex Elisa and western blot, respectively. Gene expression was analyzed using RNA-Seq and RT-PCR. Protein secretion and gene expression of IL-7, IL-7R, IFN-γ, MC1R, NF-κB, phosphorylated NF-κB (p-NF-κB), MARCO, and p-CREB were measured with western blot and RNAseq. A significant increase in IL-7, IL-7R, and IFN-γ protein expression was found in developed granulomas comparing to microparticle unchallenged PBMCs. IL-7, IL-7R, and IFN-γ protein expression was significantly reduced in developed granulomas after exposure to α-MSH compared with saline treated granulomas. Compared with microparticle unchallenged PBMCs, total NF-κB and p-NF-κB were significantly increased in developed granulomas, while expression of p-CREB was not changed. Treatment with α-MSH promoted a significantly higher concentration of p-CREB in granulomas. The anti-inflammatory effects of α-MSH were blocked by specific p-CREB inhibition. α-MSH has anti-inflammatory properties in this in vitro granuloma model, which is an effect mediated by induction of phosphorylation of CREB.


The Biological Effects of Double-Dose Alpha-1 Antitrypsin Augmentation Therapy. A Pilot Clinical Trial.

  • Michael A Campos‎ et al.
  • American journal of respiratory and critical care medicine‎
  • 2019‎

Rationale: Augmentation therapy with intravenous AAT (alpha-1 antitrypsin) is the only specific therapy for individuals with pulmonary disease from AAT deficiency (AATD). The recommended standard dose (SD; 60 mg/kg/wk) elevates AAT trough serum levels to around 50% of normal; however, outside of slowing emphysema progression, its effects in other clinical outcomes have not been rigorously proven.Objectives: To evaluate the biological effects of normalizing AAT trough levels with double-dose (DD) therapy (120 mg/kg/wk) in subjects with AATD already receiving SD therapy.Methods: Clinically stable subjects were evaluated after 4 weeks of SD therapy, followed by 4 weeks of DD therapy, and 4 weeks after return to SD therapy. At the end of each phase, BAL fluid (BALF) and plasma samples were obtained.Measurements and Main Results: DD therapy increased trough AAT levels to normal and, compared with SD therapy, reduced serine protease activity in BALF (elastase and cathepsin G), plasma elastase footprint (Aα-Val360), and markers of elastin degradation (desmosine/isodesmosine) in BALF. DD therapy also further downregulated BALF ILs and cytokines including Jak-STAT (Janus kinases-signal transducer and activator of transcription proteins), TNFα (tumor necrosis factor-α), and T-cell receptor signaling pathways, cytokines involved in macrophage migration, eosinophil recruitment, humoral and adaptive immunity, neutrophil activation, and cachexia. On restarting SD after DD treatment, a possible carryover effect was seen for several biological markers.Conclusions: Subjects with AATD on SD augmentation therapy still exhibit inflammation, protease activity, and elastin degradation that can be further improved by normalizing AAT levels. Higher AAT dosing than currently recommended may lead to enhanced clinical benefits and should be explored further.Clinical trial registered with www.clinicaltrials.gov (NCT01669421).


Effects of Tocilizumab in COVID-19 patients: a cohort study.

  • Christine A Vu‎ et al.
  • BMC infectious diseases‎
  • 2020‎

Due to the lack of proven therapies, we evaluated the effects of early administration of tocilizumab for COVID-19. By inhibition of the IL-6 receptor, tocilizumab may help to mitigate the hyperinflammatory response associated with progressive respiratory failure from SARS-CoV-2.


Growth Hormone-Releasing Hormone Receptor Antagonist Modulates Lung Inflammation and Fibrosis due to Bleomycin.

  • Chongxu Zhang‎ et al.
  • Lung‎
  • 2019‎

Growth hormone-releasing hormone (GHRH) is a 44-amino acid peptide that regulates growth hormone (GH) secretion. We hypothesized that a GHRH receptor (GHRH-R) antagonist, MIA-602, would inhibit bleomycin-induced lung inflammation and/or fibrosis in C57Bl/6J mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: