Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Zika Virus, a New Threat for Europe?

  • Henri Jupille‎ et al.
  • PLoS neglected tropical diseases‎
  • 2016‎

Since its emergence in 2007 in Micronesia and Polynesia, the arthropod-borne flavivirus Zika virus (ZIKV) has spread in the Americas and the Caribbean, following first detection in Brazil in May 2015. The risk of ZIKV emergence in Europe increases as imported cases are repeatedly reported. Together with chikungunya virus (CHIKV) and dengue virus (DENV), ZIKV is transmitted by Aedes mosquitoes. Any countries where these mosquitoes are present could be potential sites for future ZIKV outbreak. We assessed the vector competence of European Aedes mosquitoes (Aedes aegypti and Aedes albopictus) for the currently circulating Asian genotype of ZIKV.


Dissemination and transmission of the E1-226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level.

  • Camilo Arias-Goeta‎ et al.
  • PloS one‎
  • 2013‎

Emergence of arboviruses could result from their ability to exploit new environments, for example a new host. This ability is facilitated by the high mutation rate occurring during viral genome replication. The last emergence of chikungunya in the Indian Ocean region corroborates this statement since a single viral mutation at the position 226 on the E1 glycoprotein (E1-A226V) was associated with enhanced transmission by the mosquito Aedes albopictus in regions where the major mosquito vector, Aedes aegypti, is absent.We used direct competition assays in vivo to dissect out the mechanisms underlying the selection of E1-226V by Ae. albopictus. When the original variant E1-226A and the newly emerged E1-226V were provided in the same blood-meal at equal titers to both species of mosquitoes, we found that the proportion of both variants was drastically different in the two mosquito species. Following ingestion of the infectious blood-meal, the E1-226V variant was preferentially selected in Ae. albopictus, whereas the E1-226A variant was sometimes favored in Ae. aegypti. Interestingly, when the two variants were introduced into the mosquitoes by intrathoracic inoculations, E1-226V was no longer favored for dissemination and transmission in Ae. albopictus, showing that the midgut barrier plays a key role in E1-226V selection.This study sheds light on the role of the midgut barrier in the selection of novel arbovirus emerging variants. We also bring new insight into how the pre-existing variant E1-226V was selected among other viral variants including E1-226A. Indeed the E1-226V variant present at low levels in natural viral populations could rapidly emerge after being selected in Ae. albopictus at the midgut barrier level.


Estimating the risk of arbovirus transmission in Southern Europe using vector competence data.

  • Marina Mariconti‎ et al.
  • Scientific reports‎
  • 2019‎

Arboviral diseases such as chikungunya, dengue, and Zika viruses have been threatening the European countries since the introduction in 1979 of the major vector Aedes albopictus. In 2017, more than three hundred of CHIKV autochthonous cases were reported in Italy, highlighting the urgent need for a risk assessment of arboviral diseases in European countries. In this study, the vector competence for three major arboviruses were analyzed in eight Ae. albopictus populations from Europe. Here we show that Southern European Ae. albopictus were susceptible to CHIKV, DENV-1 and ZIKV with the highest vector competence for CHIKV. Based on vector competence data and vector distribution, a prediction risk map for CHIKV was generated stressing the fear of CHIKV and to a lesser extent, of other arboviruses for Europe, calling us for new public health strategies.


A New High-Throughput Tool to Screen Mosquito-Borne Viruses in Zika Virus Endemic/Epidemic Areas.

  • Sara Moutailler‎ et al.
  • Viruses‎
  • 2019‎

Mosquitoes are vectors of arboviruses affecting animal and human health. Arboviruses circulate primarily within an enzootic cycle and recurrent spillovers contribute to the emergence of human-adapted viruses able to initiate an urban cycle involving anthropophilic mosquitoes. The increasing volume of travel and trade offers multiple opportunities for arbovirus introduction in new regions. This scenario has been exemplified recently with the Zika pandemic. To incriminate a mosquito as vector of a pathogen, several criteria are required such as the detection of natural infections in mosquitoes. In this study, we used a high-throughput chip based on the BioMark™ Dynamic arrays system capable of detecting 64 arboviruses in a single experiment. A total of 17,958 mosquitoes collected in Zika-endemic/epidemic countries (Brazil, French Guiana, Guadeloupe, Suriname, Senegal, and Cambodia) were analyzed. Here we show that this new tool can detect endemic and epidemic viruses in different mosquito species in an epidemic context. Thus, this fast and low-cost method can be suggested as a novel epidemiological surveillance tool to identify circulating arboviruses.


Detection of arboviruses in mosquitoes: Evidence of circulation of chikungunya virus in Iran.

  • Hasan Bakhshi‎ et al.
  • PLoS neglected tropical diseases‎
  • 2020‎

Mosquitoes are vectors of viruses affecting animal and human health. In Iran, the prevalence of mosquito-borne viruses remains poorly investigated. Once infected, mosquito females remain infected for all their life making virus detections possible at early steps before infections are reported in vertebrate hosts. In this study, we used a recently developed high-throughput chip based on the BioMark Dynamic arrays system capable of detecting 37 arboviruses in a single experiment. A total of 1,212 mosquitoes collected in Mazandaran, North-Khorasan, and Fars provinces of Iran were analyzed. Eighteen species were identified, belonging to five genera; the most prevalent species were Anopheles maculipennis s.l. (42.41%), Culex pipiens (19.39%), An. superpictus (11.72%), and Cx. tritaeniorhynchus (10.64%). We detected chikungunya virus (CHIKV) of the Asian genotype in six mosquito pools collected in North Khorasan and Mazandaran provinces. To our knowledge, this is the first report of mosquitoes infected with CHIKV in Iran. Our high-throughput screening method can be proposed as a novel epidemiological surveillance tool to identify circulating arboviruses and to support preparedness to an epidemic in animals and humans.


Evaluating vector competence for Yellow fever in the Caribbean.

  • Gaelle Gabiane‎ et al.
  • Nature communications‎
  • 2024‎

The mosquito-borne disease, Yellow fever (YF), has been largely controlled via mass delivery of an effective vaccine and mosquito control interventions. However, there are warning signs that YF is re-emerging in both Sub-Saharan Africa and South America. Imported from Africa in slave ships, YF was responsible for devastating outbreaks in the Caribbean. In Martinique, the last YF outbreak was reported in 1908 and the mosquito Aedes aegypti was incriminated as the main vector. We evaluated the vector competence of fifteen Ae. aegypti populations for five YFV genotypes (Bolivia, Ghana, Nigeria, Sudan, and Uganda). Here we show that mosquito populations from the Caribbean and the Americas were able to transmit the five YFV genotypes, with YFV strains for Uganda and Bolivia having higher transmission success. We also observed that Ae. aegypti populations from Martinique were more susceptible to YFV infection than other populations from neighboring Caribbean islands, as well as North and South America. Our vector competence data suggest that the threat of re-emergence of YF in Martinique and the subsequent spread to Caribbean nations and beyond is plausible.


Experimental transmission of West Nile Virus and Rift Valley Fever Virus by Culex pipiens from Lebanon.

  • Renée Zakhia‎ et al.
  • PLoS neglected tropical diseases‎
  • 2018‎

West Nile virus (WNV) and Rift Valley fever virus (RVFV) are two emerging arboviruses transmitted by Culex pipiens species that includes two biotypes: pipiens and molestus. In Lebanon, human cases caused by WNV and RVFV have never been reported. However, the introduction of these viruses in the country is likely to occur through the migratory birds and animal trades. In this study, we evaluated the ability of Cx. pipiens, a predominant mosquito species in urban and rural regions in Lebanon, to transmit WNV and RVFV. Culex egg rafts were collected in the West Bekaa district, east of Lebanon and adult females of Cx. pipiens were experimentally infected with WNV and RVFV Clone 13 strain at titers of 1.6×108 and 1.33×107 plaque forming units (PFU)/mL, respectively. We estimated viral infection, dissemination and transmission at 3, 7, 14 and 19 days post infection (dpi). Results showed that infection was higher for WNV than for RVFV from 3 dpi to 19 dpi. Viral dissemination and transmission started from 3 dpi for WNV; and only from 19 dpi for RVFV. Moreover, Cx. pipiens were able to excrete in saliva a higher number of viral particles of WNV (1028 ± 405 PFU/saliva at 19 dpi) than RVFV (42 PFU/saliva at 19 dpi). Cx. pipiens from Lebanon are efficient experimental vectors of WNV and to a lower extent, RVFV. These findings should stimulate local authorities to establish an active entomological surveillance in addition to animal surveys for both viruses in the country.


Zika virus outbreak in the Pacific: Vector competence of regional vectors.

  • Elodie Calvez‎ et al.
  • PLoS neglected tropical diseases‎
  • 2018‎

In 2013, Zika virus (ZIKV) emerged in French Polynesia and spread through the Pacific region between 2013 and 2017. Several potential Aedes mosquitoes may have contributed to the ZIKV transmission including Aedes aegypti, the main arbovirus vector in the region, and Aedes polynesiensis, vector of lymphatic filariasis and secondary vector of dengue virus. The aim of this study was to analyze the ability of these two Pacific vectors to transmit ZIKV at a regional scale, through the evaluation and comparison of the vector competence of wild Ae. aegypti and Ae. polynesiensis populations from different Pacific islands for a ZIKV strain which circulated in this region during the 2013-2017 outbreak.


Chikungunya virus transmission potential by local Aedes mosquitoes in the Americas and Europe.

  • Anubis Vega-Rúa‎ et al.
  • PLoS neglected tropical diseases‎
  • 2015‎

Chikungunya virus (CHIKV), mainly transmitted in urban areas by the mosquitoes Aedes aegypti and Aedes albopictus, constitutes a major public health problem. In late 2013, CHIKV emerged on Saint-Martin Island in the Caribbean and spread throughout the region reaching more than 40 countries. Thus far, Ae. aegypti mosquitoes have been implicated as the sole vector in the outbreaks, leading to the hypothesis that CHIKV spread could be limited only to regions where this mosquito species is dominant.


Assessing vector competence of mosquitoes from northeastern France to West Nile virus and Usutu virus.

  • Jean-Philippe Martinet‎ et al.
  • PLoS neglected tropical diseases‎
  • 2023‎

West Nile virus (WNV) and Usutu virus (USUV) are two arthropod-borne viruses that circulate in mainland France. Assessing vector competence has only been conducted so far with mosquitoes from southern France while an increasingly active circulation of WNV and USUV has been reported in the last years. The main vectors are mosquitoes of the Culex genus and the common mosquito Culex pipiens. Here, we measure the vector competence of five mosquito species (Aedes rusticus, Aedes albopictus, Anopheles plumbeus, Culex pipiens and Culiseta longiareolata) present in northeastern France. Field-collected populations were exposed to artificial infectious blood meal containing WNV or USUV and examined at different days post-infection. We show that (i) Cx. pipiens transmitted WNV and USUV, (ii) Ae. rusticus only WNV, and (iii) unexpectedly, Ae. albopictus transmitted both WNV and USUV. Less surprising, An. plumbeus was not competent for both viruses. Combined with data on distribution and population dynamics, these assessments of vector competence will help in developing a risk map and implementing appropriate prevention and control measures.


Importance of mosquito "quasispecies" in selecting an epidemic arthropod-borne virus.

  • Marie Vazeille‎ et al.
  • Scientific reports‎
  • 2016‎

Most arthropod-borne viruses (arboviruses), perpetuated by alternation between a vertebrate host and an insect vector, are likely to emerge through minor genetic changes enabling the virus to adapt to new hosts. In the past decade, chikungunya virus (CHIKV; Alphavirus, Togaviridae) has emerged on La Réunion Island following the selection of a unique substitution in the CHIKV E1 envelope glycoprotein (E1-A226V) of an East-Central-South African (ECSA) genotype conferring a higher transmission rate by the mosquito Aedes albopictus. Assumed to have occurred independently on at least four separate occasions, this evolutionary convergence was suspected to be responsible for CHIKV worldwide expansion. However, assumptions on CHIKV emergence were mainly based on viral genetic changes and the role of the mosquito population quasispecies remained unexplored. Here we show that the nature of the vector population is pivotal in selecting the epidemic CHIKV. We demonstrate using microsatellites mosquito genotyping that Ae. albopictus populations are genetically differentiated, contributing to explain their differential ability to select the E1-226V mutation. Aedes albopictus, newly introduced in Congo coinciding with the first CHIKV outbreak, was not able to select the substitution E1-A226V nor to preferentially transmit a CHIKV clone harboring the E1-226V as did Ae. albopictus from La Réunion.


Absence of transmission of vYF next generation Yellow Fever vaccine in mosquitoes.

  • Rachel Bellone‎ et al.
  • PLoS neglected tropical diseases‎
  • 2022‎

One of the most effective vaccines against an arbovirus is the YFV-17D live-attenuated vaccine developed in 1937 against Yellow Fever (YF). This vaccine replicates poorly in mosquitoes and consequently, is not transmitted by vectors. Vaccine shortages, mainly due to constrained productions based on pathogen-free embryonated eggs, led Sanofi to move towards alternative methods based on a state-of-the-art process using continuous cell line cultures in bioreactor. vYF-247 is a next-generation live-attenuated vaccine candidate based on 17D adapted to grow in serum-free Vero cells. For the development of a new vaccine, WHO recommends to document infectivity and replication in mosquitoes. Here we infected Aedes aegypti and Aedes albopictus mosquitoes with vYF-247 vaccine compared first to the YF-17D-204 reference Sanofi vaccines (Stamaril and YF-VAX) and a clinical human isolate S-79, provided in a blood meal at a titer of 6.5 Log ffu/mL and secondly, to the clinical isolate only at an increased titer of 7.5 Log ffu/mL. At different days post-infection, virus replication, dissemination and transmission were evaluated by quantifying viral particles in mosquito abdomen, head and thorax or saliva, respectively. Although comparison of vYF-247 to reference vaccines could not be completed to yield significant results, we showed that vYF-247 was not transmitted by both Aedes species, either laboratory strains or field-collected populations, compared to clinical strain S-79 at the highest inoculation dose. Combined with the undetectable to low level viremia detected in vaccinees, transmission of the vYF-247 vaccine by mosquitoes is highly unlikely.


Evolution and biological significance of flaviviral elements in the genome of the arboviral vector Aedes albopictus.

  • Vincent Houé‎ et al.
  • Emerging microbes & infections‎
  • 2019‎

Since its genome details are publically available, the mosquito Aedes albopictus has become the central stage of attention for deciphering multiple biological and evolutionary aspects at the root of its success as an invasive species. Its genome of 1,967 Mb harbours an unusual high number of non-retroviral integrated RNA virus sequences (NIRVS). NIRVS are enriched in piRNA clusters and produce piRNAs, suggesting an antiviral effect. Here, we investigated the evolutionary history of NIRVS in geographically distant Ae. albopictus populations by comparing genetic variation as derived by neutral microsatellite loci and seven selected NIRVS. We found that the evolution of NIRVS was far to be neutral with variations both in their distribution and sequence polymorphism among Ae. albopictus populations. The Flaviviral elements AlbFlavi2 and AlbFlavi36 were more deeply investigated in their association with dissemination rates of dengue virus (DENV) and chikungunya virus (CHIKV) in Ae. albopictus at both population and individual levels. Our results show a complex association between NIRVS and DENV/CHIKV opening a new avenue for investigating the functional role of NIRVS as antiviral elements shaping vector competence of mosquitoes to arboviruses.


Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection.

  • Mathieu Dubrulle‎ et al.
  • PloS one‎
  • 2009‎

Aedes aegypti and Aedes albopictus are potential vectors of chikungunya virus (CHIKV). The recent CHIKV outbreaks were caused by a new variant characterized by a mutation in the E1 glycoprotein gene (E1-226V) which has favored a better transmissibility by Ae. albopictus. As Ae. albopictus tends to replace Ae. aegypti in many regions, one question remained: is Ae. albopictus as efficient as Ae. aegypti to transmit the variant E1-226V of CHIKV?


Different populations of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Central Africa are susceptible to Zika virus infection.

  • Basile Kamgang‎ et al.
  • PLoS neglected tropical diseases‎
  • 2020‎

Zika virus (ZIKV) is a Flavivirus (Flaviviridae) transmitted to humans mainly by the bite of an infected Aedes mosquitoes. Aedes aegypti is the primary epidemic vector of ZIKV and Ae. albopictus, the secondary one. However, the epidemiological role of both Aedes species in Central Africa where Ae. albopictus was recently introduced is poorly characterized. Field-collected strains of Ae. aegypti and Ae. albopictus from different ecological settings in Central Africa were experimentally infected with a ZIKV strain isolated in West Africa. Mosquitoes were analysed at 14- and 21-days post-exposure. Both Ae. aegypti and Ae. albopictus were able to transmit ZIKV but with higher overall transmission efficiency for Ae. aegypti (57.9%) compared to Ae. albopictus (41.5%). In addition, disseminated infection and transmission rates for both Ae. aegypti and Ae. albopictus varied significantly according to the location where they were sampled from. We conclude that both Ae. aegypti and Ae. albopictus are able to transmit ZIKV and may intervene as active Zika vectors in Central Africa. These findings could contribute to a better understanding of the epidemiological transmission of ZIKV in Central Africa and develop suitable strategy to prevent major ZIKV outbreaks in this region.


Experimental adaptation of dengue virus 1 to Aedes albopictus mosquitoes by in vivo selection.

  • Rachel Bellone‎ et al.
  • Scientific reports‎
  • 2020‎

In most of the world, Dengue virus (DENV) is mainly transmitted by the mosquito Aedes aegypti while in Europe, Aedes albopictus is responsible for human DENV cases since 2010. Identifying mutations that make DENV more competent for transmission by Ae. albopictus will help to predict emergence of epidemic strains. Ten serial passages in vivo in Ae. albopictus led to select DENV-1 strains with greater infectivity for this vector in vivo and in cultured mosquito cells. These changes were mediated by multiple adaptive mutations in the virus genome, including a mutation at position 10,418 in the DENV 3'UTR within an RNA stem-loop structure involved in subgenomic flavivirus RNA production. Using reverse genetics, we showed that the 10,418 mutation alone does not confer a detectable increase in transmission efficiency in vivo. These results reveal the complex adaptive landscape of DENV transmission by mosquitoes and emphasize the role of epistasis in shaping evolutionary trajectories of DENV variants.


Risk of dengue in Central Africa: Vector competence studies with Aedes aegypti and Aedes albopictus (Diptera: Culicidae) populations and dengue 2 virus.

  • Basile Kamgang‎ et al.
  • PLoS neglected tropical diseases‎
  • 2019‎

Dengue is the most important mosquito-borne diseases worldwide but was considered scarce in West-Central Africa. During the last decade, dengue outbreaks have increasingly been reported in urban foci in this region suggesting major epidemiological changes. However, in Central Africa where both vectors, Aedes aegypti and Aedes albopictus are well established, the role of each species in dengue transmission remains poorly investigated.


Bidirectional Interactions between Arboviruses and the Bacterial and Viral Microbiota in Aedes aegypti and Culex quinquefasciatus.

  • Chenyan Shi‎ et al.
  • mBio‎
  • 2022‎

Mosquitoes are important vectors for many arboviruses. It is becoming increasingly clear that various symbiotic microorganisms (including bacteria and insect-specific viruses; ISVs) in mosquitoes have the potential to modulate the ability of mosquitoes to transmit arboviruses. In this study, we compared the bacteriome and virome (both eukaryotic viruses and bacteriophages) of female adult Aedes aegypti and Culex quinquefasciatus mosquitoes fed with sucrose/water, blood, or blood spiked with Zika virus (ZIKV) or West Nile virus (WNV), respectively. Furthermore, we investigated associations between the microbiota and vector competence. We show that the influence of arboviruses on the mosquito microbiome-and vice versa-is distinct for each combination of arbovirus/mosquito species. The presence of ZIKV resulted in a temporarily increased Aedes ISV diversity. However, this effect was distinct for different ISVs: some ISVs decreased following the blood meal (Aedes aegypti totivirus), whereas other ISVs increased only when the blood contained ZIKV (Guadeloupe mosquito virus). Also, the diversity of the Aedes bacteriome depended on the diet and the presence of ZIKV, with a lower diversity observed for mosquitoes receiving blood without ZIKV. In Cx. quinquefasciatus, some ISVs increased in WNV-infected mosquitoes (Guadeloupe Culex tymo-like virus). Particularly, the presence of Wenzhou sobemo-like virus 3 (WSLV3) was associated with the absence of infectious WNV in mosquito heads, suggesting that WSLV3 might affect vector competence for WNV. Distinct profiles of bacteriophages were identified in Culex mosquitoes depending on diet, despite the lack of clear changes in the bacteriome. Overall, our data demonstrate a complex three-way interaction among arboviruses, resident microbiota, and the host, which is distinct for different arbovirus-mosquito combinations. A better understanding of these interactions may lead to the identification of microbiota able to suppress the ability of arbovirus transmission to humans, and hence improved arbovirus control measures. IMPORTANCE In this study, we first utilized the single mosquito microbiome analysis, demonstrating a complex three-way interaction among arboviruses, resident microbiota, and the host, which is distinct for different arbovirus-mosquito combinations. Some of the previously described "core virus" increased in the mosquitos receiving viral blood meal, like Guadeloupe mosquito virus and Guadeloupe Culex tymo-like virus, suggesting their potential roles in ZIKV and WNV infection. Notably, Wenzhou sobemo-like virus 3 was associated with the absence of infectious WNV in heads of Culex mosquitoes, which might affect vector competence for WNV. A better understanding of these interactions will lead to the identification of microbiota able to suppress the ability of arbovirus transmission to humans, and hence improved arbovirus control measures.


The Aedes aegypti RNA interference response against Zika virus in the context of co-infection with dengue and chikungunya viruses.

  • Mayke Leggewie‎ et al.
  • PLoS neglected tropical diseases‎
  • 2023‎

Since its detection in 2015 in Brazil, Zika virus (ZIKV) has remained in the spotlight of international public health and research as an emerging arboviral pathogen. In addition to single infection, ZIKV may occur in co-infection with dengue (DENV) and chikungunya (CHIKV) viruses, with whom ZIKV shares geographic distribution and the mosquito Aedes aegypti as a vector. The main mosquito immune response against arboviruses is RNA interference (RNAi). It is unknown whether or not the dynamics of the RNAi response differ between single arboviral infections and co-infections. In this study, we investigated the interaction of ZIKV and DENV, as well as ZIKV and CHIKV co-infections with the RNAi response in Ae. aegypti. Using small RNA sequencing, we found that the efficiency of small RNA production against ZIKV -a hallmark of antiviral RNAi-was mostly similar when comparing single and co-infections with either DENV or CHIKV. Silencing of key antiviral RNAi proteins, showed no change in effect on ZIKV replication when the cell is co-infected with ZIKV and DENV or CHIKV. Interestingly, we observed a negative effect on ZIKV replication during CHIKV co-infection in the context of Ago2-knockout cells, though his effect was absent during DENV co-infection. Overall, this study provides evidence that ZIKV single or co-infections with CHIKV or DENV are equally controlled by RNAi responses. Thus, Ae. aegypti mosquitoes and derived cells support co-infections of ZIKV with either CHIKV or DENV to a similar level than single infections, as long as the RNAi response is functional.


The tiger mosquito in Lebanon two decades after its introduction: A growing health concern.

  • Nabil Haddad‎ et al.
  • PLoS neglected tropical diseases‎
  • 2022‎

The tiger mosquito was introduced to the Eastern region of the Mediterranean basin more than twenty years ago. In Lebanon, it was first observed in 2002 in a limited number of locations mainly from the coastal area of the country. In the absence of national entomological control program, this invasive mosquito became an established species and is now considered in many localities, a source of nuisance because of its human biting behavior. Several entomological surveys were conducted to monitor the geographic spread and the seasonal dynamics of Aedes albopictus by collecting adult stages and by monitoring oviposition activity. Moreover, its susceptibility to the common groups of insecticides was assessed using WHO standard bioassays. Previous vector competence studies revealed that local strains were able to transmit Chikungunya and Dengue viruses. Due to the increased risk of Zika virus introduction in the country, we determined the competence of local populations to transmit this virus. Mapping results showed that Ae. albopictus is mainly spread in the relatively humid western versant of the Mount Lebanon chain reaching 1000m altitude, while it is absent from arid and semi-arid inland areas. Besides, this mosquito is active during 32 weeks from spring till the end of autumn. Local strains of the tiger mosquito are susceptible to pyrethroids and carbamates but resistant to organophosphates and organochlorines. They showed ability to transmit Zika virus; however, only 9% of females were capable to excrete the virus in their saliva at day 28 post infection. Current and previous observations highlight the need to establish a surveillance system in order to control this mosquito and monitor the potential introduction of related diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: