Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Perinatal Propionate Supplementation Protects Adult Male Offspring from Maternal Chronic Kidney Disease-Induced Hypertension.

  • You-Lin Tain‎ et al.
  • Nutrients‎
  • 2022‎

Emerging evidence supports that early-life disturbance of gut microbiota has an impact on adult disease in later life. Offspring hypertension can be programmed by maternal chronic kidney disease (CKD). Conversely, perinatal use of gut microbiota-targeted therapy has been implemented to reverse programming processes and prevent hypertension. Short-chain fatty acids (SCFAs), the major gut microbiota-derived metabolites, can be applied as postbiotics. Propionate, one of predominant SCFAs, has been shown to have antihypertensive property. We examined whether perinatal propionate supplementation can prevent offspring hypertension induced by maternal CKD. CKD was induced by chow supplemented with 0.5% adenine for 3 weeks before pregnancy. Propionate (P) was supplemented at 200 mmol/L in drinking water during pregnancy and lactation. Male offspring were divided into four groups (n = 7-8/group): control, CKD, control+propionate (CP), and CKD+propionate (CKDP). Maternal CKD-induced offspring hypertension was reversed by perinatal propionate supplementation. The protective effects of perinatal propionate treatment were related to increased propionate-generating bacteria Clostridium spp. and plasma propionate level, increased expression of renal G protein-coupled receptor 41 (GPR41, a SCFA receptor), augmentation of α-diversity, and shifts in gut microbiota composition. In summary, our results highlight that maternal CKD-induced offspring hypertension can be prevented by the use of gut microbial metabolite SCFAs in early life, which could shed light on the prevention of the current hypertension pandemic.


Hypertension Programmed by Perinatal High-Fat Diet: Effect of Maternal Gut Microbiota-Targeted Therapy.

  • Chien-Ning Hsu‎ et al.
  • Nutrients‎
  • 2019‎

Hypertension can originate in early life caused by perinatal high-fat (HF) consumption. Gut microbiota and their metabolites short chain fatty acids (SCFAs), trimethylamine (TMA), and trimethylamine N-oxide (TMAO) are involved in the development of hypertension. Despite the beneficial effects of prebiotic/probiotic on human health, little is known whether maternal use of prebiotics/probiotics could protect offspring against the development of hypertension in adulthood. We investigated whether perinatal HF diet-induced programmed hypertension in adult offspring can be prevented by therapeutic uses of prebiotic inulin or probiotic Lactobacillus casei during gestation and lactation. Pregnant Sprague-Dawley rats received regular chow or HF diet (D12331, Research Diets), with 5% w/w long chain inulin (PRE), or 2 × 108 CFU/day Lactobacillus casei via oral gavage (PRO) during pregnancy and lactation. Male offspring (n = 8/group) were assigned to four groups: control, HF, PRE, and PRO. Rats were sacrificed at 16 weeks of age. Maternal prebiotic or probiotic therapy prevents elevated blood pressure (BP) programmed by perinatal HF consumption. Both prebiotic and probiotic therapies decreased the Firmicutes to Bacteroidetes ratio and renal mRNA expression of Ace, but increased abundance of genus Lactobacillus and Akkermansia. Additionally, prebiotic treatment prevents HF-induced elevation of BP is associated with reduced fecal propionate and acetate levels, while probiotic therapy restored several Lactobacillus species. Maternal probiotic or prebiotic therapy caused a reduction in plasma TMAO level and TMAO-to-TMA ratio. The beneficial effects of prebiotic or probiotic therapy on elevated BP programmed by perinatal HF diet are relevant to alterations of microbial populations, modulation of microbial-derived metabolites, and mediation of the renin-angiotensin system. Our results cast a new light on the use of maternal prebiotic/probiotic therapy to prevent hypertension programmed by perinatal HF consumption. The possibility of applying gut microbiota-targeted therapies as a reprogramming strategy for hypertension warrants further clinical translation.


Dietary Resveratrol Butyrate Monoester Supplement Improves Hypertension and Kidney Dysfunction in a Young Rat Chronic Kidney Disease Model.

  • You-Lin Tain‎ et al.
  • Nutrients‎
  • 2023‎

Chronic kidney disease (CKD) remains a public health problem. Certain dietary supplements can assist in the prevention of CKD progression. In this regard, resveratrol is a polyphenol and has a potential therapeutic role in alleviating CKD. We previously utilized butyrate in order to improve the bioavailability of resveratrol via esterification and generated a resveratrol butyrate monoester (RBM). In this study, the hypothesis that RBM supplementation is able to protect against kidney dysfunction and hypertension was tested by using an adenine-induced CKD model. For this purpose, three-week-old male Sprague Dawley rats (n = 40) were equally categorized into: group 1-CN (sham control); group 2-CKD (adenine-fed rats); group 3-REV (CKD rats treated with 50 mg/L resveratrol); group 4-MEL (CKD rats treated with 25 mg/L RBM); and group 5-MEH (CKD rats treated with 50 mg/L RBM). At the end of a 12-week period, the rats were then euthanized. The adenine-fed rats displayed hypertension and kidney dysfunction, which were attenuated by dietary supplementation with RBM. The CKD-induced hypertension coincided with: decreased nitric oxide (NO) bioavailability; augmented renal protein expression of a (pro)renin receptor and angiotensin II type 1 receptor; and increased oxidative stress damage. Additionally, RBM and resveratrol supplementation shaped distinct gut microbiota profiles in the adenine-treated CKD rats. The positive effect of high-dose RBM was shown together with an increased abundance of the genera Duncaniella, Ligilactobacillus, and Monoglobus, as well as a decrease in Eubacterium and Schaedierella. Importantly, the mechanism of action of the RBM supplementation may be related to the restoration of NO, rebalancing of the RAS, a reduction in oxidative stress, and alterations to the gut microbiota. Moreover, RBM supplementation shows promise for the purposes of improving CKD outcomes and hypertension. As such, further translation to human studies is warranted.


Resveratrol Butyrate Ester Supplementation Blunts the Development of Offspring Hypertension in a Maternal Di-2-ethylhexyl Phthalate Exposure Rat Model.

  • You-Lin Tain‎ et al.
  • Nutrients‎
  • 2023‎

Resveratrol (REV) is a plant polyphenol with a plethora of beneficial properties. We previously enhanced the efficacy of REV via esterification of REV with butyrate to form resveratrol butyrate ester (RBE). Compared with REV, RBE exhibits higher bioavailability and better antioxidant effects. Hypertension can originate in early life because of maternal toxic chemical exposure. This study aims to examine the effectiveness of RBE in the protection of offspring hypertension induced by maternal di-2-ethylhexylphthalate (DEHP) exposure and to explore the underlying mechanisms. DEHP (10 mg/kg/day) was used as oral gavage to pregnant rats during gestation and lactation. The control group received the vehicle. Three groups of DEHP-exposed dams received REV (6.67 mg/kg/day), or low-dose (3.33 mg/kg/day) or high-dose (6.67 mg/kg/day) RBE in drinking water during gestation and lactation. Perinatal DEHP exposure resulted in hypertension and bodyweight gain in adult male offspring, which was prevented by high-dose RBE. REV supplementation attenuated DEHP exposure-induced increases in blood pressure but not bodyweight. High-dose RBE decreased renal oxidative damage, increased plasma butyrate concentrations, and altered short chain fatty acid receptor (SCFA) expression. Low-dose RBE treatment reduced downstream mediators of the acryl hydrocarbon receptor (AHR) signaling pathway. Moreover, DEHP exposure, REV and RBE treatment differentially shaped the offspring's gut microbiota. In particular, high-dose RBE increased the abundance of the genus Duncaniella. The beneficial effects of RBE treatment were related to reducing oxidative damage, increasing plasma butyrate concentrations, downregulating SCFA receptor expression, antagonizing AHR signaling, and altering the gut microbiota. This study provides the first evidence of RBE as a novel plant polyphenol bioproduct targeting the oxidative stress and gut microbiota to protect against maternal DEHP exposure-primed offspring hypertension.


Maternal Administration of Probiotic or Prebiotic Prevents Male Adult Rat Offspring against Developmental Programming of Hypertension Induced by High Fructose Consumption in Pregnancy and Lactation.

  • Chien-Ning Hsu‎ et al.
  • Nutrients‎
  • 2018‎

Excessive intake of fructose is associated with hypertension. Gut microbiota and their metabolites are thought to be associated with the development of hypertension. We examined whether maternal high-fructose (HF) diet-induced programmed hypertension via altering gut microbiota, regulating short-chain fatty acids (SCFAs) and their receptors, and mediating nutrient-sensing signals in adult male offspring. Next, we aimed to determine whether early gut microbiota-targeted therapies with probiotic Lactobacillus casei and prebiotic inulin can prevent maternal HF-induced programmed hypertension. Pregnant rats received 60% high-fructose (HF) diet, with 2 × 10⁸ CFU/day Lactobacillus casei via oral gavage (HF+Probiotic), or with 5% w/w long chain inulin (HF+prebiotic) during pregnancy and lactation. Male offspring (n = 7⁻8/group) were assigned to four groups: control, HF, HF+Probiotic, and HF+Prebiotic. Rats were sacrificed at 12 weeks of age. Maternal probiotic Lactobacillus casei and prebiotic inulin therapies protect against hypertension in male adult offspring born to fructose-fed mothers. Probiotic treatment prevents HF-induced hypertension is associated with reduced plasma acetate level and decreased renal mRNA expression of Olfr78. While prebiotic treatment increased plasma propionate level and restored HF-induced reduction of Frar2 expression. Maternal HF diet has long-term programming effects on the adult offspring's gut microbiota. Probiotic and prebiotic therapies exerted similar protective effects on blood pressure but they showed different mechanisms on modulation of gut microbiota. Maternal HF diet induced developmental programming of hypertension, which probiotic Lactobacillus casei or prebiotic inulin therapy prevented. Maternal gut microbiota-targeted therapies could be reprogramming strategies to prevent the development of hypertension caused by maternal consumption of fructose-rich diet.


Renoprotective Effects of Solid-State Cultivated Antrodia cinnamomea in Juvenile Rats with Chronic Kidney Disease.

  • You-Lin Tain‎ et al.
  • Nutrients‎
  • 2023‎

Antrodia cinnamomea (AC), a medicinal mushroom, has multiple beneficial actions, such as acting as a prebiotic. The incidence of chronic kidney disease (CKD) in children has steadily increased year by year, and CKD is related to gut microbiota dysbiosis. Herein, we investigated the renoprotection of solid-state cultivated AC in adenine-induced CKD juvenile rats. CKD was induced in 3-week-old male rats by feeding with adenine (0.5%) for three weeks. Treated groups received oral administration of AC extracts at either a low (10 mg/kg/day) or high dose (100 mg/kg/day) for six weeks. At nine weeks of age, the rats were sacrificed. Renal outcomes, blood pressure, and gut microbiome composition were examined. Our results revealed that AC treatment, either low- or high-dose, improved kidney function, proteinuria, and hypertension in CKD rats. Low-dose AC treatment increased plasma concentrations of short-chain fatty acids (SCFAs). Additionally, we observed that AC acts like a prebiotic by enriching beneficial bacteria in the gut, such as Akkermansia and Turicibacter. Moreover, the beneficial action of AC against CKD-related hypertension might also be linked to the inhibition of the renin-angiotensin system. This study brings new insights into the potential application of AC as a prebiotic dietary supplement in the prevention and treatment of pediatric CKD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: