Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

Soluble Serum αKlotho Is a Potential Predictive Marker of Disease Progression in Clear Cell Renal Cell Carcinoma.

  • Margherita Gigante‎ et al.
  • Medicine‎
  • 2015‎

Renal cell carcinoma (RCC) accounts for approximately 3% of adult malignancies, and clear cell RCC (ccRCC), that has a high metastatic index and high relapse rate, is the most common histological subtype. The identification of new biomarkers in ccRCC is fundamental for stratifying patients into prognostic risk groups and to guide therapy. The renoprotective antiaging gene, αKlotho, has recently been found to work as a tumor suppressor in different human cancers. Here, we evaluated αKlotho expression in tissue and serum of ccRCC patients and correlated it with disease progression. Tissue αKlotho expression was studied by quantitative RT-PCR and immunohistochemistry. In addition, soluble serum αKlotho levels were preoperatively measured in 160 patients who underwent nephrectomy for RCC with ELISA. Estimates of cancer-specific (CSS) and progression-free survival (PFS) were calculated according to the Kaplan-Meier method. Multivariate analysis was performed to identify the most significant variables for predicting CSS and PFS. αKlotho protein levels were significantly decreased in RCC tissues compared with normal tissues (P < 0.01) and the more advanced the disease, the more evident the down-regulation. This trend was also observed in serum samples. Statistically significant differences resulted between serum αKlotho levels and tumor size (P = 0.003), Fuhrman grade (P = 0.007), and clinical stage (P = 0.0004). CSS and PFS were significantly shorter in patients with lower levels of αKlotho (P < 0.0001 and P = 0.0004, respectively). At multivariate analysis low serum levels of αKlotho were independent adverse prognostic factors for CSS (HR = 2.11; P = 0.03) and PFS (HR = 2.18; P = 0.03).These results indicate that a decreased αKlotho expression is correlated with RCC progression, and suggest a key role of declining αKlotho in the onset of cancer metastasis.


Local synthesis of interferon-alpha in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells.

  • Giuseppe Castellano‎ et al.
  • Arthritis research & therapy‎
  • 2015‎

Type I interferons are pivotal in the activation of autoimmune response in systemic lupus erythematous. However, the pathogenic role of interferon-alpha in patients affected by lupus nephritis remains uncertain. The aim of our study was to investigate the presence of a specific interferon signature in lupus nephritis and the effects of interferon-alpha at renal level.


Rapamycin induces ILT3(high)ILT4(high) dendritic cells promoting a new immunoregulatory pathway.

  • Giovanni Stallone‎ et al.
  • Kidney international‎
  • 2014‎

ILT3(high)ILT4(high) dendritic cells (DCs) may cause anergy in CD4(+)CD45RO(+)CD25(+) T cells transforming them into regulatory T cells (Tregs). Here, we tested whether chronic exposure to rapamycin may modulate this immunoregulatory pathway in renal transplant recipients. Forty renal transplant patients with biopsy-proven chronic allograft nephropathy and receiving calcineurin inhibitors were randomly assigned to either calcineurin inhibitor dose reduction or withdrawal with rapamycin introduction. At conversion and 2 years thereafter, we measured the rapamycin effects on circulating DCs (BDCA1/BDCA2 and ILT3/ILT4 expression), CD4(+)/CD25(high)/Foxp3(+) Tregs, CD8(+)/CD28(-) T cells, and the Th1/Th2 balance in graft biopsies. In rapamycin-treated patients, peripheral BDCA2(+) cells were significantly increased along with ILT3/ILT4(+) DCs. The number of circulating CD4(+)/CD25(high)/Foxp3(+)/CTLA4(+) Tregs, CD8(+)CD28(-) T cells, and HLA-G serum levels were higher in the rapamycin-treated group. The number of ILT3/ILT4(+)BDCA2(+) DC was directly and significantly correlated with circulating Tregs and CD8(+)CD28(-) T cells. ILT3/ILT4 expression was increased in kidney biopsies at the end of the study period along with a significant bias toward a Th2 response within the graft only in the rapamycin-treated patients. Thus, rapamycin induces the upregulation of ILT3 and ILT4 on the DC surface, and this effect is associated with an increase in the number of Tregs and expansion of the CD8(+)CD28(-) T cell population. This suggests that mTOR inhibition may promote a novel immunoregulatory pathway.


TRIM8 anti-proliferative action against chemo-resistant renal cell carcinoma.

  • Mariano Francesco Caratozzolo‎ et al.
  • Oncotarget‎
  • 2014‎

In some tumours, despite a wild-type p53 gene, the p53 pathway is inactivated by alterations in its regulators or by unknown mechanisms, leading to resistance to cytotoxic therapies. Understanding the mechanisms of functional inactivation of wild-type p53 in these tumours may help to define prospective targets for treating cancer by restoring p53 activity. Recently, we identified TRIM8 as a new p53 modulator, which stabilizes p53 impairing its association with MDM2 and inducing the reduction of cell proliferation. In this paper we demonstrated that TRIM8 deficit dramatically impairs p53-mediated cellular responses to chemotherapeutic drugs and that TRIM8 is down regulated in patients affected by clear cell Renal Cell Carcinoma (ccRCC), an aggressive drug-resistant cancer showing wild-type p53. These results suggest that down regulation of TRIM8 might be an alternative way to suppress p53 activity in RCC. Interestingly, we show that TRIM8 expression recovery in RCC cell lines renders these cells sensitive to chemotherapeutic treatments following p53 pathway re-activation. These findings provide the first mechanistic link between TRIM8 and the drug resistance of ccRCC and suggest more generally that TRIM8 could be used as enhancer of the chemotherapy efficacy in cancers where p53 is wild-type and its pathway is defective.


Osteoclastogenic potential of peripheral blood mononuclear cells in cleidocranial dysplasia.

  • Maria Felicia Faienza‎ et al.
  • International journal of medical sciences‎
  • 2014‎

Cleidocranial dysplasia (CCD) is an autosomal dominant skeletal dysplasia characterized by hypoplastic or aplastic clavicles, dental abnormalities, and delayed closure of the cranial sutures. In addition, mid-face hypoplasia, short stature, skeletal anomalies and osteoporosis are common. We aimed to evaluate osteoclastogenesis in a child (4 years old), who presented with clinical signs of CCD and who have been diagnosed as affected by deletion of RUNX2, master gene in osteoblast differentiation, but also affecting T cell development and indirectly osteoclastogenesis. The results of this study may help to understand whether in this disease is present an alteration in the bone-resorptive cells, the osteoclasts (OCs). Unfractionated and T cell-depleted Peripheral Blood Mononuclear Cells (PBMCs) from patient were cultured in presence/absence of recombinant human M-CSF and RANKL. At the end of the culture period, OCs only developed following the addition of M-CSF and RANKL. Moreover, real-time PCR experiment showed that freshly isolated T cells expressed the osteoclastogenic cytokines (RANKL and TNFα) at very low level, as in controls. This is in accordance with results arising from flow cytometry experiments demonstrating an high percentage of circulating CD4(+)CD28(+) and CD4(+)CD27(+) T cells, not able to produce osteoclastogenic cytokines. Also RANKL, OPG and CTX serum levels in CCD patient are similar to controls, whereas QUS measurements showed an osteoporotic status (BTT-Z score -3.09) in the patient. In conclusions, our findings suggest that the heterozygous deletion of RUNX2 in this CCD patient did not alter the osteoclastogenic potential of PBMCs in vitro.


Activated innate immunity and the involvement of CX3CR1-fractalkine in promoting hematuria in patients with IgA nephropathy.

  • Sharon N Cox‎ et al.
  • Kidney international‎
  • 2012‎

A hallmark of immunoglobulin A nephropathy (IgAN) is episodes of gross hematuria coinciding with mucosal infections that can represent the disease-triggering event. Here we performed a whole genomic screen of IgAN patients during gross hematuria to clarify the link between mucosal antigens and glomerular hematuria. Modulated genes showed a clear involvement of the intracellular interferon signaling, antigen-presenting pathway, and the immunoproteasome. The mRNA and protein level of the chemokine receptor characterizing cytotoxic effector lymphocytes, CX3CR1, was upregulated. In vitro antigenic stimulation of peripheral blood mononuclear cells from IgAN patients, healthy blood donors, and other nephropathies with microscopic hematuria showed that only in IgAN patients was CX3CR1 enhanced in a dose-dependent manner. A significantly higher amount of glomerular and urinary fractalkine, the only ligand of CX3CR1, was also found in IgAN patients with recurrent episodes of gross hematuria compared with other patients with microscopic or no hematuria. This suggests a predisposition for cytotoxic cell extravasation only in patients with recurrent gross hematuria. Thus, we found a defect in antigen handling in peripheral blood mononuclear cells of IgAN patients with a specific increase of CX3CR1. This constitutive upregulation of glomerular and urinary fractalkine suggests an involvement of the CX3CR1-fractalkine axis in the exacerbation of gross hematuria.


PMMA-Based Continuous Hemofiltration Modulated Complement Activation and Renal Dysfunction in LPS-Induced Acute Kidney Injury.

  • Alessandra Stasi‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Sepsis-induced acute kidney injury (AKI) is a frequent complication in critically ill patients, refractory to conventional treatments. Aberrant activation of innate immune system may affect organ damage with poor prognosis for septic patients. Here, we investigated the efficacy of polymethyl methacrylate membrane (PMMA)-based continuous hemofiltration (CVVH) in modulating systemic and tissue immune activation in a swine model of LPS-induced AKI. After 3 h from LPS infusion, animals underwent to PMMA-CVVH or polysulfone (PS)-CVVH. Renal deposition of terminal complement mediator C5b-9 and of Pentraxin-3 (PTX3) deposits were evaluated on biopsies whereas systemic Complement activation was assessed by ELISA assay. Gene expression profile was performed from isolated peripheral blood mononuclear cells (PBMC) by microarrays and the results validated by Real-time PCR. Endotoxemic pigs presented oliguric AKI with increased tubulo-interstitial infiltrate, extensive collagen deposition, and glomerular thrombi; local PTX-3 and C5b-9 renal deposits and increased serum activation of classical and alternative Complement pathways were found in endotoxemic animals. PMMA-CVVH treatment significantly reduced tissue and systemic Complement activation limiting renal damage and fibrosis. By microarray analysis, we identified 711 and 913 differentially expressed genes with a fold change >2 and a false discovery rate <0.05 in endotoxemic pigs and PMMA-CVVH treated-animals, respectively. The most modulated genes were Granzyme B, Complement Factor B, Complement Component 4 Binding Protein Alpha, IL-12, and SERPINB-1 that were closely related to sepsis-induced immunological process. Our data suggest that PMMA-based CVVH can efficiently modulate immunological dysfunction in LPS-induced AKI.


LPS-Binding Protein Modulates Acute Renal Fibrosis by Inducing Pericyte-to-Myofibroblast Trans-Differentiation through TLR-4 Signaling.

  • Giuseppe Castellano‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

During sepsis, the increased synthesis of circulating lipopolysaccharide (LPS)-binding protein (LBP) activates LPS/TLR4 signaling in renal resident cells, leading to acute kidney injury (AKI). Pericytes are the major source of myofibroblasts during chronic kidney disease (CKD), but their involvement in AKI is poorly understood. Here, we investigate the occurrence of pericyte-to-myofibroblast trans-differentiation (PMT) in sepsis-induced AKI. In a swine model of sepsis-induced AKI, PMT was detected within 9 h from LPS injection, as evaluated by the reduction of physiologic PDGFRβ expression and the dysfunctional α-SMA increase in peritubular pericytes. The therapeutic intervention by citrate-based coupled plasma filtration adsorption (CPFA) significantly reduced LBP, TGF-β, and endothelin-1 (ET-1) serum levels, and furthermore preserved PDGFRβ and decreased α-SMA expression in renal biopsies. In vitro, both LPS and septic sera led to PMT with a significant increase in Collagen I synthesis and α-SMA reorganization in contractile fibers by both SMAD2/3-dependent and -independent TGF-β signaling. Interestingly, the removal of LBP from septic plasma inhibited PMT. Finally, LPS-stimulated pericytes secreted LBP and TGF-β and underwent PMT also upon TGF-β receptor-blocking, indicating the crucial pro-fibrotic role of TLR4 signaling. Our data demonstrate that the selective removal of LBP may represent a therapeutic option to prevent PMT and the development of acute renal fibrosis in sepsis-induced AKI.


Increased Expression of the Autocrine Motility Factor is Associated With Poor Prognosis in Patients With Clear Cell-Renal Cell Carcinoma.

  • Giuseppe Lucarelli‎ et al.
  • Medicine‎
  • 2015‎

Glucose-6-phosphate isomerase (GPI), also known as phosphoglucose isomerase, was initially identified as the second glycolytic enzyme that catalyzes the interconversion of glucose-6-phosphate to fructose-6-phosphate. Later studies demonstrated that GPI was the same as the autocrine motility factor (AMF), and that it mediates its biological effects through the interaction with its surface receptor (AMFR/gp78). In this study, we assessed the role of GPI/AMF as a prognostic factor for clear cell renal cell carcinoma (ccRCC) cancer-specific (CSS) and progression-free survival (PFS). In addition, we evaluated the expression and localization of GPI/AMF and AMFR, using tissue microarray-based immunohistochemistry (TMA-IHC), indirect immunofluorescence (IF), and confocal microscopy analysis.Primary renal tumor and nonneoplastic tissues were collected from 180 patients who underwent nephrectomy for ccRCC. TMA-IHC and IF staining showed an increased signal for both GPI and AMFR in cancer cells, and their colocalization on plasma membrane. Kaplan-Meier curves showed significant differences in CSS and PFS among groups of patients with high versus low GPI expression. In particular, patients with high tissue levels of GPI had a 5-year survival rate of 58.8%, as compared to 92.1% for subjects with low levels (P < 0.0001). Similar findings were observed for PFS (56.8% vs 93.3% at 5 years). At multivariate analysis, GPI was an independent adverse prognostic factor for CSS (HR = 1.26; P = 0.001), and PFS (HR = 1.16; P = 0.01).In conclusion, our data suggest that GPI could serve as a marker of ccRCC aggressiveness and a prognostic factor for CSS and PFS.


mTOR inhibitors improve both humoral and cellular response to SARS-CoV-2 messenger RNA BNT16b2 vaccine in kidney transplant recipients.

  • Giuseppe S Netti‎ et al.
  • American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons‎
  • 2022‎

Kidney transplant recipients (KTRs) have been considered as patients at higher risk of SARS-CoV-2-related disease severity, thus COVID-19 vaccination was highly recommended. However, possible interferences of different immunosuppression with development of both humoral and T cell-mediated immune response to COVID-19 vaccination have not been determined. Here we evaluated the association between mTOR-inhibitors (mTOR-I) and immune response to mRNA BNT162b2 (Pfizer-BioNTech) vaccine in KTR. To this aim 132 consecutive KTR vaccinated against COVID-19 in the early 2021 were enrolled, and humoral and T cell-mediated immune response were assessed after 4-5 weeks. Patients treated with mTOR-I showed significantly higher anti-SARS-CoV-2 IgG titer (p = .003) and higher percentages of anti-SARS-CoV-2 S1/RBD Ig (p = .024), than those without. Moreover, SARS-CoV-2-specific T cell-derived IFNγ release was significantly increased in patients treated with mTOR-I (p < .001), than in those without. Multivariate analysis confirmed that therapy with mTOR-I gained better humoral (p = .005) and T cell-mediated immune response (p = .005) in KTR. The presence of mTOR-I is associated with a better immune response to COVID-19 vaccine in KTR compared to therapy without mTOR-I, not only by increasing vaccine-induced antibodies but also by stimulating anti-SARS-CoV-2 T cell response. These finding are consistent with a potential beneficial role of mTOR-I as modulators of immune response to COVID-19 vaccine in KTR.


Two dimensional gel phosphoproteome of peripheral blood mononuclear cells: comparison between two enrichment methods.

  • Maria Teresa Rocchetti‎ et al.
  • Proteome science‎
  • 2014‎

Protein phosphorylation is considered a key event in signal transduction. Peripheral blood mononuclear cells (PBMCs) are a critical component of the immune system. The analysis of PBMCs phosphoproteome might help elucidate the signaling pathways essential to their biological role in health, immunological diseases and cancer. Enrichment of phosphoproteins becomes a prerequisite for phosphoproteome analysis and conventionally requires a multi-step procedure and sophisticated equipments. In this study, we standardized 2D-PAGE phosphoproteome analysis of PBMCs and compared two phosphoprotein enrichment methods, lanthanum chloride precipitation and affinity micro-column. Further, the different specificity for PBMCs phosphorylated proteins of each method was investigated.


Adhesion of Platelets to Colon Cancer Cells Is Necessary to Promote Tumor Development in Xenograft, Genetic and Inflammation Models.

  • Marica Cariello‎ et al.
  • Cancers‎
  • 2021‎

Platelets represent the linkage between tissue damage and inflammatory response with a putative role in tumorigenesis. Given the importance of the microenvironment in colon cancer development, we elucidated the eventual role of platelets-cancer cells crosstalk in in vivo colon cancermodels. To evaluate the involvement of platelets in intestinal tumorigenesis, we first analyzed if the ablation of β-integrin P-selectin that drives platelets-cell adhesion, would contribute to platelets-colon cancer cell interaction and drive cancer progression. In a xenograft tumor model, we observed that when tumors are inoculated with platelets, the ablation of P-selectin significantly reduced tumor growth compared to control platelets. Furthermore, in genetic models, as well as in chronic colitis-associated colorectal carcinogenesis, P-selectin ablated mice displayed a significant reduction in tumor number and size compared to control mice. Taken together, our data highlights the importance of platelets in the tumor microenvironment for intestinal tumorigenesis. These results support the hypothesis that a strategy aimed to inhibit platelets adhesion to tumor cells are able to block tumor growth and could represent a novel therapeutic approach to colon cancer treatment.


Serum Levels of BAFF and APRIL Predict Clinical Response in Anti-PLA2R-Positive Primary Membranous Nephropathy.

  • Giuseppe Stefano Netti‎ et al.
  • Journal of immunology research‎
  • 2019‎

Primary membranous nephropathy (PMN) is a renal-specific autoimmune disease caused by circulating autoantibodies that target glomerular podocyte antigens (PLA2R/THSD7A). However, very little is known on the molecular mechanisms controlling B cell response in this nephropathy. The present study was aimed at correlating the serum levels of B cell activators BAFF/BLyS and APRIL with the presence of anti-PLA2R antibodies in PMN patients and with long-term clinical outcome. To this aim, 51 patients with anti-PLA2R-positive biopsy-proven PMN and nephrotic range proteinuria (>3.5 g/24 hours) were enrolled between January 2009 and December 2015 and treated with conventional 6-month immunosuppressive therapy. After 6 months, 29 patients (56.9%) cleared circulating anti-PLA2R, while in remaining 22 (43.1%), they persisted. Intriguingly, in the first group, baseline serum levels of BAFF/BLyS and APRIL were significantly lower than those in the second one. Moreover, after 6 months of immunosuppressive therapy, an overall reduction in both cytokine serum levels was observed. However, in PMN patients with anti-PLA2R clearance, this reduction was more prominent, as compared with those with anti-PLA2R persistence. When related to clinical outcome, lower baseline BAFF/BLyS (<6.05 ng/mL) and APRIL (<4.20 ng/mL) serum levels were associated with significantly higher probability to achieve complete or partial remission after 24-month follow-up. After dividing the entire study cohort into three groups depending on both cytokine baseline serum levels, patients with both BAFF/BLyS and APRIL below the cut-off showed a significantly higher rate of complete or partial remission as compared with patients with only one cytokine above the cut-off, while the composite endpoint was achieved in a very low rate of patients with both cytokines above the cut-off. Taken together, these results provide new insights into the role of BAFF/BLyS and APRIL in both the pathogenesis of anti-PLA2R-positive PMN and the response to immunosuppressive therapy.


Human renal stem/progenitor cells repair tubular epithelial cell injury through TLR2-driven inhibin-A and microvesicle-shuttled decorin.

  • Fabio Sallustio‎ et al.
  • Kidney international‎
  • 2013‎

Acute kidney injury (AKI) is emerging as a worldwide public health problem. Recent studies have focused on the possibility of using human adult renal stem/progenitor cells (ARPCs) to improve the repair of AKI. Here we studied the influence of ARPCs on the healing of cisplatin-injured renal proximal tubular epithelial cells. Tubular, but not glomerular, ARPCs provided a protective effect promoting proliferation of surviving tubular cells and inhibiting cisplatin-induced apoptosis. The recovery effect was specific to tubular ARPCs, occurred only after damage sensing, and was completely cancelled by TLR2 blockade on tubular ARPCs. Moreover, tubular, but not glomerular, ARPCs were resistant to the apoptotic effect of cisplatin. Tubular ARPCs operate mainly through the engagement of TLR2, the secretion of inhibin-A protein, and microvesicle-shuttled decorin, inhibin-A, and cyclin D1 mRNAs. These factors worked synergistically and were essential to the repair process. The involvement of tubular ARPC-secreted inhibin-A and decorin mRNA in the pathophysiology of AKI was also confirmed in transplant patients affected by delayed graft function. Hence, identification of this TLR2-driven recovery mechanism may shed light on new therapeutic strategies to promote the recovery capacity of the kidney in acute tubular damage. Use of these components, derived from ARPCs, avoids injecting stem cells.


Genome-wide analysis of differentially expressed genes and splicing isoforms in clear cell renal cell carcinoma.

  • Alessio Valletti‎ et al.
  • PloS one‎
  • 2013‎

Clear cell renal cell carcinoma (ccRCC) is the most common malignant renal epithelial tumor and also the most deadly. To identify molecular changes occurring in ccRCC, in the present study we performed a genome wide analysis of its entire complement of mRNAs. Gene and exon-level analyses were carried out by means of the Affymetrix Exon Array platform. To achieve a reliable detection of differentially expressed cassette exons we implemented a novel methodology that considered contiguous combinations of exon triplets and candidate differentially expressed cassette exons were identified when the expression level was significantly different only in the central exon of the triplet. More detailed analyses were performed for selected genes using quantitative RT-PCR and confocal laser scanning microscopy. Our analysis detected over 2,000 differentially expressed genes, and about 250 genes alternatively spliced and showed differential inclusion of specific cassette exons comparing tumor and non-tumoral tissues. We demonstrated the presence in ccRCC of an altered expression of the PTP4A3, LAMA4, KCNJ1 and TCF21 genes (at both transcript and protein level). Furthermore, we confirmed, at the mRNA level, the involvement of CAV2 and SFRP genes that have previously been identified. At exon level, among potential candidates we validated a differentially included cassette exon in DAB2 gene with a significant increase of DAB2 p96 splice variant as compared to the p67 isoform. Based on the results obtained, and their robustness according to both statistical analysis and literature surveys, we believe that a combination of gene/isoform expression signature may remarkably contribute, after suitable validation, to a more effective and reliable definition of molecular biomarkers for ccRCC early diagnosis, prognosis and prediction of therapeutic response.


Branchio-Oto-Renal Syndrome (BOR) associated with focal glomerulosclerosis in a patient with a novel EYA1 splice site mutation.

  • Maddalena Gigante‎ et al.
  • BMC nephrology‎
  • 2013‎

Branchio-oto-renal (BOR) syndrome is an autosomal dominant disorder characterized by branchial, ear, and renal anomalies. The most common gene mutated in BOR patients is EYA1, the human homolog of the Drosophila eyes absent gene, while mutations in SIX1 gene, the human homolog of sine oculis, encoding a DNA binding protein interacting with EYA1, have been reported less frequently. Recently, mutations in another SIX family member, SIX5, have been described in BOR patients, however, this association has not been confirmed by other groups.


Identification of GLA gene deletions in Fabry patients by Multiplex Ligation-dependent Probe Amplification (MLPA).

  • Annalisa Schirinzi‎ et al.
  • Molecular genetics and metabolism‎
  • 2008‎

Fabry disease is an under-recognized X-linked lysosomal disorder, due to alpha-galactosidase A deficiency. Most of the mutations in the GLA gene are detectable using genomic sequencing analysis. However, deletions of one or more exons or deletion encompassing the entire gene are undetectable, especially in heterozygous females. The Multiplex Ligation-dependent Probe Amplification (MLPA) is an efficient tool for discovering these rearrangements. In this study two novel different deletions were detected using MLPA assay on two Fabry patients, both resulted mutation negative by sequencing analysis. These data suggest that this screening should be systematically included in genetic testing surveys of patients with Fabry disease.


Inhibin-A and Decorin Secreted by Human Adult Renal Stem/Progenitor Cells Through the TLR2 Engagement Induce Renal Tubular Cell Regeneration.

  • Fabio Sallustio‎ et al.
  • Scientific reports‎
  • 2017‎

Acute kidney injury (AKI) is a public health problem worldwide. Several therapeutic strategies have been made to accelerate recovery and improve renal survival. Recent studies have shown that human adult renal progenitor cells (ARPCs) participate in kidney repair processes, and may be used as a possible treatment to promote regeneration in acute kidney injury. Here, we show that human tubular ARPCs (tARPCs) protect physically injured or chemically damaged renal proximal tubular epithelial cells (RPTECs) by preventing cisplatin-induced apoptosis and enhancing proliferation of survived cells. tARPCs without toll-like receptor 2 (TLR2) expression or TLR2 blocking completely abrogated this regenerative effect. Only tARPCs, and not glomerular ARPCs, were able to induce tubular cell regeneration process and it occurred only after damage detection. Moreover, we have found that ARPCs secreted inhibin-A and decorin following the RPTEC damage and that these secreted factors were directly involved in cell regeneration process. Polysaccharide synthetic vesicles containing these molecules were constructed and co-cultured with cisplatin damaged RPTECs. These synthetic vesicles were not only incorporated into the cells, but they were also able to induce a substantial increase in cell number and viability. The findings of this study increase the knowledge of renal repair processes and may be the first step in the development of new specific therapeutic strategies for renal repair.


Altered Phosphorylation of Cytoskeleton Proteins in Peripheral Blood Mononuclear Cells Characterizes Chronic Antibody-Mediated Rejection in Kidney Transplantation.

  • Maria Teresa Rocchetti‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Chronic antibody-mediated rejection (CAMR) is the major cause of kidney transplant failure. The molecular mechanisms underlying this event are still poorly defined and this lack of knowledge deeply influences the potential therapeutic strategies. The aim of our study was to analyze the phosphoproteome of peripheral blood mononuclear cells (PBMCs), to identify cellular signaling networks differentially activated in CAMR. Phosphoproteins isolated from PBMCs of biopsy proven CAMR, kidney transplant recipients with normal graft function and histology and healthy immunocompetent individuals, have been investigated by proteomic analysis. Phosphoproteomic results were confirmed by Western blot and PBMCs' confocal microscopy analyses. Overall, 38 PBMCs samples were analyzed. A differential analysis of PBMCs' phosphoproteomes revealed an increase of lactotransferrin, actin-related protein 2 (ARPC2) and calgranulin-B in antibody-mediated rejection patients, compared to controls. Increased expression of phosphorylated ARPC2 and its correlation to F-actin filaments were confirmed in CAMR patients. Our results are the first evidence of altered cytoskeleton organization in circulating immune cells of CAMR patients. The increased expression of phosphorylated ARPC2 found in the PBMCs of our patients, and its association with derangement of F-actin filaments, might suggest that proteins regulating actin dynamics in immune cells could be involved in the mechanism of CAMR of kidney grafts.


Low C3 Serum Levels Predict Severe Forms of STEC-HUS With Neurologic Involvement.

  • Giuseppe Stefano Netti‎ et al.
  • Frontiers in medicine‎
  • 2020‎

Background: The correlation between the severity of hemolytic uremic syndrome related to Shiga toxin-producing Escherichia coli (STEC-HUS) and involvement of the complement system has been examined in a small number of studies, with conflicting results. In the present study, we investigated whether serum C3 levels on admission are associated with neurologic involvement. Methods: To this purpose, 68 consecutive STEC-HUS patients were recruited and main clinical and laboratory variables ad hospital admission were compared between those with or without neurologic involvement. Results: STEC-HUS patients who developed neurologic involvement (NI) showed significant higher leukocyte count, C-reactive protein and hemoglobin, and lower sodium levels as compared with those without. Interestingly, baseline serum levels of C3 were significantly lower in patients with NI as compared with those without (p < 0.001). Moreover, when stratified according to need of Eculizumab rescue therapy due to severe NI, patients treated with this drug showed baseline C3 serum levels significantly lower than those who were not (p < 0.001). Low C3 was independent risk factor for NI in our patients' population when entered as covariate in a multivariate logistic regression analysis including other major variables previously proposed as possible predictors of poor prognosis in STEC-HUS (for instance, leukocyte count, c-reactive protein, sodium levels) (HR 6.401, 95%CI 1.617-25.334, p = 0.008 for C3). To underline the role of complement in the worsening of STEC-HUS patients' clinical conditions and outcomes, all patients were divided into two groups according to the baseline lower vs. normal serum levels of C3 and the main data on care needs were assessed. Interestingly more patients with lower C3 serum levels required renal replacement therapy (p = 0.024), anti-hypertensive therapy (p = 0.011), Intensive Care Unit admission (p = 0.009), and longer hospitalization (p = 0.003), thus displaying significantly more severe disease features as compared with those with normal C3 serum levels. Conclusions: Our data suggests that children with STEC-HUS with decreased C3 concentrations at admission are more likely to develop neurologic involvement and are at increased risk of having severe clinical complications.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: