Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Porcine circovirus type 2 (PCV2) induces cell proliferation, fusion, and chemokine expression in swine monocytic cells in vitro.

  • Yi-Chieh Tsai‎ et al.
  • Veterinary research‎
  • 2010‎

Granulomatous lymphadenitis is one of the pathognomonic lesions in post-weaning multisystemic wasting syndrome (PMWS)-affected pigs. This unique lesion has not been reported in direct association with viral infection in pigs. The objective of the present study was to evaluate whether porcine circovirus type 2 (PCV2) alone is able to induce functional modulation in porcine monocytic cells in vitro to elucidate its possible role in the development of granulomatous inflammation. It was found that the proliferation activity of blood monocytes (Mo) and monocyte-derived macrophages (MDM) was significantly enhanced by PCV2. During monocyte-macrophage differentiation, the PCV2 antigen-containing rate and formation of multinucleated giant cells (MGC) were significantly increased in MDM when compared to those in Mo. The MDM-derived MGC displayed a significantly higher PCV2 antigen-containing rate than did the mono-nucleated MDM. Supernatants from PCV2-inoculated MDM at 24 h post-inoculation induced an increased tendency of chemotactic activity for blood Mo. At the same inoculation time period, levels of mRNA expression of the monocytic chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-1, also significantly increased in PCV2-inoculated MDM. The results suggest that PCV2 alone may induce cell proliferation, fusion, and chemokine expression in swine monocytic cells. Thus, PCV2 itself may play a significant role in the induction of granulomatous inflammation in PMWS-affected pigs.


Role of nuclear factor-kappa B in feline injection site sarcoma.

  • Cheng-Shun Hsueh‎ et al.
  • BMC veterinary research‎
  • 2019‎

Chronic inflammation has been implicated in sarcomagenesis. Among various factors, activation of nuclear factor-kappa B (NF-κB) signaling pathway has been documented being able to target genes associated with tumor progression and up-regulate the expression of tumor-promoting cytokines and survival genes in several human solid tumors. Feline injection sites sarcomas (FISS) are malignant entities derived from the mesenchymal origin. The disease has been considered to be associated with vaccine adjuvant, aluminum, which serves as a stimulus continuously inducing overzealous inflammatory and immunologic reactions. To understand the contribution of NF-κB in FISS, detection of activated NF-κB in paraffin-embedded specimens, in vitro establishment of primary cells derived from FISS, and evaluation of the effects of the NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on primary tumor cells were conducted.


Evaluation of antiviral activity of Bacillus licheniformis-fermented products against porcine epidemic diarrhea virus.

  • Ju-Yi Peng‎ et al.
  • AMB Express‎
  • 2019‎

Bacillus licheniformis (B. licheniformis) is commonly used as probiotic and its secondary metabolites are attractive anti-microbial candidate. In the present study, we aimed to evaluate the antiviral activity of crude extracts from B. licheniformis against porcine epidemic diarrhea virus (PEDV), a highly contagious enveloped porcine virus that has caused great economic loss in pigs. In vivo, PEDV-infected piglets supplemented with air-dried solid state fermentative cultivate containing B. licheniformis-fermented products (BLFP) showed milder clinical symptoms and decreased viral shedding. Importantly, no significant systemic pathological lesions and no reduction in average daily gain were noted in pigs supplemented with the BLFP, which suggests that it is safe for use in pigs. In vitro experiments revealed that while B. licheniformis crude extracts exhibited no toxicity in Vero cells, co-cultivation of B. licheniformis crude extracts with PEDV significantly reduced viral infection and replication. Summarized current results suggest that the B. licheniformis-fermented products could be a novel candidate food additive for reducing the impact of PED on the swine industry.


Porcine circovirus type 2 decreases the infection and replication of attenuated classical swine fever virus in porcine alveolar macrophages.

  • Yu-Liang Huang‎ et al.
  • Research in veterinary science‎
  • 2014‎

Recently, it has been noted that porcine circovirus type 2 (PCV2) infection adversely affects the protective efficacy of Lapinized Philippines Coronel (LPC) vaccine, an attenuated strain of classical swine fever virus (CSFV), in pigs. In order to investigate the possible mechanisms of the PCV2-derived interference, an in vitro model was established to study the interaction of LPC virus (LPCV) and PCV2 in porcine alveolar macrophages (AMs). The results showed that PCV2 reduced the LPCV infection in AMs and the levels of PCV2-derived interference were dose-dependent. The PCV2-derived interference also reduced the replication level of LPCV in AMs. The full-length PCV2 DNA and its fragment DNA C9 CpG-ODN were involved in the reduction of LPCV infection in AMs, whereas UV-inactivated PCV2 was not. In addition, a moderate negative correlation between the LPCV antigen-containing rate and IFN-γ production was observed, and had a dose-dependent trend with the level of PCV2-inoculation. The results of the present study may partially explain how PCV2 infection interferes with the efficacy of LPC vaccine.


Porcine circovirus type 2 (PCV2) infection decreases the efficacy of an attenuated classical swine fever virus (CSFV) vaccine.

  • Yu-Liang Huang‎ et al.
  • Veterinary research‎
  • 2011‎

The Lapinized Philippines Coronel (LPC) vaccine, an attenuated strain of classical swine fever virus (CSFV), is an important tool for the prevention and control of CSFV infection and is widely and routinely used in most CSF endemic areas, including Taiwan. The aim of this study was to investigate whether PCV2 infection affects the efficacy of the LPC vaccine. Eighteen 6-week-old, cesarean-derived and colostrum-deprived (CDCD), crossbred pigs were randomly assigned to four groups. A total of 10(5.3) TCID50 of PCV2 was experimentally inoculated into pigs through both intranasal and intramuscular routes at 0 days post-inoculation (dpi) followed by LPC vaccination 12 days later. All the animals were challenged with wild-type CSFV (ALD stain) at 27 dpi and euthanized at 45 dpi. Following CSFV challenge, the LPC-vaccinated pigs pre-inoculated with PCV2 showed transient fever, viremia, and viral shedding in the saliva and feces. The number of IgM(+), CD4(+)CD8-CD25(+), CD4(+)CD8(+)CD25(+), and CD4(-)CD8(+)CD25(+) lymphocyte subsets and the level of neutralizing antibodies against CSFV were significantly higher in the animals with LPC vaccination alone than in the pigs with PCV2 inoculation/LPC vaccination. In addition, PCV2-derived inhibition of the CSFV-specific cell proliferative response of peripheral blood mononuclear cells (PBMCs) was demonstrated in an ex vivo experiment. These findings indicate that PCV2 infection decreases the efficacy of the LPC vaccine. This PCV2-derived interference may not only allow the invasion of wild-type CSFV in pig farms but also increases the difficulty of CSF prevention and control in CSF endemic areas.


Molecular characterization of cryptically circulating rabies virus from ferret badgers, Taiwan.

  • Hue-Ying Chiou‎ et al.
  • Emerging infectious diseases‎
  • 2014‎

After the last reported cases of rabies in a human in 1959 and a nonhuman animal in 1961, Taiwan was considered free from rabies. However, during 2012-2013, an outbreak occurred among ferret badgers in Taiwan. To examine the origin of this virus strain, we sequenced 3 complete genomes and acquired multiple rabies virus (RABV) nucleoprotein and glycoprotein sequences. Phylogeographic analyses demonstrated that the RABV affecting the Taiwan ferret badgers (RABV-TWFB) is a distinct lineage within the group of lineages from Asia and that it has been differentiated from its closest lineages, China I (including isolates from Chinese ferret badgers) and the Philippines, 158-210 years ago. The most recent common ancestor of RABV-TWFB originated 91-113 years ago. Our findings indicate that RABV could be cryptically circulating in the environment. An understanding of the underlying mechanism might shed light on the complex interaction between RABV and its host.


Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine circovirus 2 (PCV2)-induced interferon-alpha.

  • Hui-Wen Chang‎ et al.
  • Veterinary microbiology‎
  • 2005‎

Two common viral pathogens of swine, namely, porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV), were investigated in regard to their effects on monolayer cultures of swine alveolar macrophages (AMs). The purpose was to identify selected cellular changes and responses potentially associated with the clinical reactions of pigs infected with either or both of these viruses. Measurements included the (1) absolute and relative numbers of infected, viable, and apoptotic cells; (2) distribution of viral antigens; (3) levels of interferon-alpha (IFN-alpha) and tumor necrosis factor-alpha (TNF-alpha) produced and their association with the extent of virus-induced cytopathology. Four groups of AMs were studied, including mock-infected, PCV2 alone-infected (PCV2-A), PRRSV alone-infected (PRRSV-A), and PCV2 and PRRSV dually infected (PCV2/PRRSV) groups. The AMs of PCV2-A group had high antigen-containing rate without cell death. There was a marked increase in cell death and apoptosis in PRRSV-A group. However, a lower PRRSV-induced infectious rate, cell death, and apoptosis were seen in PCV2/PRRSV group. High levels of IFN-alpha production were detected in PCV2-infected groups, but not in mock-infected and PRRSV-A groups. The PRRSV-induced cytopathic effect (CPE) on MARC-145 cells or swine AMs was markedly reduced by pre-incubation of the cells with UV-treated or non-UV-treated supernatants of PCV2-infected AMs. In addition, the reduction in CPE was abolished when the supernatants of PCV2-infected AMs were pre-treated with a mouse anti-recombinant porcine IFN-alpha antibody. The results suggest that swine AMs were an important reservoir of PCV2; PCV2 infection reduced PRRSV infection and PRRSV-associated CPE in PCV2/PRRSV AMs; the reduction of PRRSV infection in AMs was mediated by IFN-alpha generated by PCV2 infection. The reduced PRRSV-associated CPE in AMs and increased pro-inflammatory cytokine production may lead to a more severe pneumonic lesion in those dually infected pigs.


Identification of Neutralizing Monoclonal Antibodies Targeting Novel Conformational Epitopes of the Porcine Epidemic Diarrhoea Virus Spike Protein.

  • Chia-Yu Chang‎ et al.
  • Scientific reports‎
  • 2019‎

Since 2010, newly identified variants of porcine epidemic diarrhoea virus (PEDV) have caused high mortality in neonatal piglets which has devastated the swine industry. The spike (S) glycoprotein of PEDV contains multiple neutralizing epitopes and is a major target for PEDV neutralization and vaccine development. To understand the antigenicity of the new PEDV variant, we characterized the neutralizing epitopes of a new genotype 2b PEDV isolate from Taiwan, PEDV Pintung 52 (PEDV-PT), by the generation of neutralizing monoclonal antibodies (NmAbs). Two NmAbs, P4B-1, and E10E-1-10 that recognized the ectodomain of the full-length recombinant PEDV S protein and exhibited neutralizing ability against the PEDV-PT virus were selected. Recombinant truncated S proteins were used to identify the target sequences for the NmAbs and P4B-1 was shown to recognize the C-terminus of CO-26K equivalent epitope (COE) at amino acids (a.a.) 575-639 of the PEDV S. Interestingly, E10E-1-10 could recognize a novel neutralizing epitope at a.a. 435-485 within the S1A domain of the PEDV S protein, whose importance and function are yet to be determined. Moreover, both NmAbs could not bind to linearized S proteins, indicating that only conformational epitopes are recognized. This data could improve our understanding of the antigenic structures of the PEDV S protein and facilitate future development of novel epitope-based vaccines.


Evaluation and Comparison of the Pathogenicity and Host Immune Responses Induced by a G2b Taiwan Porcine Epidemic Diarrhea Virus (Strain Pintung 52) and Its Highly Cell-Culture Passaged Strain in Conventional 5-Week-Old Pigs.

  • Yen-Chen Chang‎ et al.
  • Viruses‎
  • 2017‎

A genogroup 2b (G2b) porcine epidemic diarrhea virus (PEDV) Taiwan Pintung 52 (PEDVPT) strain was isolated in 2014. The pathogenicity and host antibody responses elicited by low-passage (passage 5; PEDVPT-P5) and high-passage (passage 96; PEDVPT-P96) PEDVPT strains were compared in post-weaning PEDV-seronegative pigs by oral inoculation. PEDVPT-P5-inoculation induced typical diarrhea during 1-9 days post inoculation with fecal viral shedding persisting for 26 days. Compared to PEDVPT-P5, PEDVPT-P96 inoculation induced none-to-mild diarrhea and lower, delayed fecal viral shedding. Although PEDVPT-P96 elicited slightly lower neutralizing antibodies and PEDV-specific immunoglobulin G (IgG) and immunoglobulin A (IgA) titers, a reduction in pathogenicity and viral shedding of the subsequent challenge with PEDVPT-P5 were noted in both PEDVPT-P5- and PEDVPT-P96-inoculated pigs. Alignment and comparison of full-length sequences of PEDVPT-P5 and PEDVPT-P96 revealed 23 nucleotide changes and resultant 19 amino acid substitutions in non-structure proteins 2, 3, 4, 9, 14, 15, spike, open reading frame 3 (ORF3), and membrane proteins with no detectable deletion or insertion. The present study confirmed the pathogenicity of the PEDVPT isolate in conventional post-weaning pigs. Moreover, data regarding viral attenuation and potency of induced antibodies against PEDVPT-P5 identified PEDVPT-P96 as a potential live-attenuated vaccine candidate.


Effects of selective cyclooxygenase-2 inhibitor robenacoxib on primary cells derived from feline injection-site sarcoma.

  • Chen-Hui Lu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2023‎

Feline injection-site sarcomas (FISSs) are highly invasive malignant mesenchymal neoplasms that arise from injection sites in cats. Although the tumorigenesis of FISSs is still uncertain, there is a consensus that FISS is associated with chronic inflammation caused by irritation of injection-related trauma and foreign chemical substances. Chronic inflammation can provide a proper microenvironment for tumour development, which has been known as one of the risk factors of tumorigenesis in many tumours. To investigate the tumorigenesis of FISS and screen for its potential therapeutic targets, cyclooxygenase-2 (COX-2), an inflammation-enhancing enzyme, was selected as a target for this study. In vitro experiments using FISS- and normal tissue-derived primary cells and robenacoxib, a highly selective COX-2 inhibitor, were performed. The results demonstrated that expression of COX-2 could be detected in formalin-fixed and paraffin-embedded FISS tissues and FISS-derived primary cells. Cell viability, migration and colony formation of FISS-derived primary cells were inhibited, and cell apoptosis was enhanced by robenacoxib in a dose-dependent manner. However, susceptibility to robenacoxib varied in different lines of FISS primary cells and was not completely correlated with COX-2 expression. Our results suggest that COX-2 inhibitors could be potential adjuvant therapeutics against FISSs.


Th2 cytokine bias induced by silver nanoparticles in peripheral blood mononuclear cells of common bottlenose dolphins (Tursiops truncatus).

  • Wen-Ta Li‎ et al.
  • PeerJ‎
  • 2018‎

Silver nanoparticles (AgNPs) have been widely used in many commercial products due to their excellent antibacterial ability. The AgNPs are released into the environment, gradually accumulate in the ocean, and may affect animals at high trophic levels, such as cetaceans and humans, via the food chain. Hence, the negative health impacts caused by AgNPs in cetaceans are of concern. Cytokines play a major role in the modulation of immune system and can be classified into two types: Th1 and Th2. Th1/Th2 balance can be evaluated by the ratios of their polarizing cytokines (i.e., interferon [IFN]-γ/Interleukin [IL]-4), and animals with imbalanced Th1/Th2 response may become more susceptible to certain kinds of infection. Therefore, the present study evaluated the in vitro cytokine responses of cetacean peripheral blood mononuclear cells (cPBMCs) to 20 nm citrate-AgNPs (C-AgNP20) by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR).


Immunotoxicity of Silver Nanoparticles (AgNPs) on the Leukocytes of Common Bottlenose Dolphins (Tursiops truncatus).

  • Wen-Ta Li‎ et al.
  • Scientific reports‎
  • 2018‎

Silver nanoparticles (AgNPs) have been extensively used and are considered as an emerging contaminant in the ocean. The environmental contamination of AgNPs is expected to increase greatly over time, and cetaceans, as the top ocean predators, will suffer the negative impacts of AgNPs. In the present study, we investigate the immunotoxicity of AgNPs on the leukocytes of cetaceans using several methods, including cytomorphology, cytotoxicity, and functional activity assays. The results reveal that 20 nm Citrate-AgNPs (C-AgNP20) induce different cytomorphological alterations and intracellular distributions in cetacean polymorphonuclear cells (cPMNs) and peripheral blood mononuclear cells (cPBMCs). At high concentrations of C-AgNP20 (10 and 50 μg/ml), the time- and dose-dependent cytotoxicity in cPMNs and cPBMCs involving apoptosis is demonstrated. C-AgNP20 at sub-lethal doses (0.1 and 1 μg/ml) negatively affect the functional activities of cPMNs (phagocytosis and respiratory burst) and cPBMCs (proliferative activity). The current study presents the first evidence of the cytotoxicity and immunotoxicity of AgNPs on the leukocytes of cetaceans and improves our understanding of environmental safety concerning AgNPs. The dose-response data of AgNPs on the leukocytes of cetaceans are invaluable for evaluating the adverse health effects in cetaceans and for proposing a conservation plan for marine mammals.


Concurrent leukoencephalomyelitis and polyneuritis in a Maltese terrier: resembling combined central and peripheral demyelination in humans.

  • Wen-Ta Li‎ et al.
  • The Journal of veterinary medical science‎
  • 2019‎

A one-year-old male Maltese terrier presented with mild ataxia and disorientation for 4 months. Over time, clinical signs progressed from paraparesis to non-ambulatory tetraparesis, voice change and dysphagia. Histological examination revealed concurrent leukoencephalomyelitis and polyneuritis. Infectious etiologies, including dengue, Japanese encephalitis, Zika, canine distemper, pseudorabies, rabies, toxoplasmosis, neosporosis, leishmaniasis, and encephalitozoonosis, were ruled out by PCR and/or immunohistochemical (IHC) staining. IHC tested on neurological tissues highlighted a heterogeneous population of infiltrating T and B lymphocytes admixed macrophages. Therefore, this case was diagnosed with current leukoencephalomyelitis and polyneuritis, resembling combined central and peripheral demyelination (CCPD), an autoimmune inflammatory demyelinating disease affecting both the CNS and PNS in humans.


Development of a reverse transcription multiplex real-time PCR for the detection and genotyping of classical swine fever virus.

  • Yu-Liang Huang‎ et al.
  • Journal of virological methods‎
  • 2009‎

A reverse transcription multiplex real-time PCR (RT-MRT-PCR) was developed for rapid detection and genotyping of classical swine fever virus (CSFV). The universal primers and specific TaqMan probes for each of the three genotypes, genotypes 1, 2, and 3, were designed within the 3'-UTR of the CSFV. Non-CSFV swine virus and clinical samples from specific pathogen-free (SPF) pigs were both demonstrated to be CSFV-negative by RT-MRT-PCR. The diagnostic sensitivity of RT-MRT-PCR was determined to be 1 viral copy/microl for each genotype of standard plasmid. For the analytical sensitivity experiment, 100 samples of 14 CSFV genotype 1 strains and 86 samples from CSFV outbreak farms were all detected as CSFV-positive by RT-MRT-PCR, and the genotype results were consistent with the results of sequencing from a previous study. The intra-assay and inter-assay variations of RT-MRT-PCR were below 3% in all experiments. The sensitivity of RT-MRT-PCR was the same as the reverse transcription nested PCR (RT-nPCR) and higher than reverse transcription PCR (RT-PCR) and viral isolation from clinical samples. This assay was used further to evaluate the duration of viremia of wild-type CSFV in vaccinated exposed pigs. The results indicated that pigs vaccinated with the E2 subunit vaccine had longer viremia than pigs given the C-strain vaccine, which is compatible with the findings of previous studies. Thus, the new RT-MRT-PCR is a rapid, reproducible, sensitive, and specific genotyping tool for CSFV detection.


Expression of HIF-1α and VEGF in feline mammary gland carcinomas: association with pathological characteristics and clinical outcomes.

  • Bo Chen‎ et al.
  • BMC veterinary research‎
  • 2020‎

The microenvironment within solid malignant tumors, including feline mammary gland carcinomas (FMGCs), is commonly hypoxic, possibly due to the lack of functional blood vessels in rapidly proliferating neoplastic tissue. Malignant cells can undergo genetic and adaptive changes that prevent them from dying due to oxygen deprivation through expressions of hypoxia-inducible factor 1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). Therefore, HIF-1α and VEGF are ideal biomarkers for cancer therapy and prognostic evaluation. The aims of this study were to evaluate the expression of HIF-1α and VEGF in feline mammary carcinomas and analyze their correlations with clinical and pathological factors, such as clinical stage, histologic grading, regional metastasis, and overall survival rate.


Development and comparison of enzyme-linked immunosorbent assays based on recombinant trimeric full-length and truncated spike proteins for detecting antibodies against porcine epidemic diarrhea virus.

  • Chia-Yu Chang‎ et al.
  • BMC veterinary research‎
  • 2019‎

Since 2010, outbreaks of genotype 2 (G2) porcine epidemic diarrhea virus (PEDV) have caused high mortality in neonatal piglets and have had devastating impacts on the swine industry in many countries. A reliable serological assay for evaluating the PEDV-specific humoral and mucosal immune response is important for disease survey, monitoring the efficacy of immunization, and designing strategies for the prevention and control of PED. Two PEDV spike (S) glycoprotein-based indirect enzyme-linked immunosorbent assays (ELISAs) were developed using G2b PEDV-Pintung 52 (PEDV-PT) trimeric full-length S and truncated S1-501 proteins derived from the human embryonic kidney (HEK)-293 cell expression system. The truncated S1-501 protein was selected from a superior expressed stable cell line. The sensitivity and specificity of these two ELISAs were compared to immunostaining of G2b PEDV-PT infected cells and to a commercial nucleocapsid (N)-based indirect ELISA kit using a panel of PEDV negative and hyperimmune sera.


Prevalence and genetic variation of porcine circovirus type 2 in Taiwan from 2001 to 2011.

  • Chun Wang‎ et al.
  • Research in veterinary science‎
  • 2013‎

Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome (PMWS) in Taiwanese pig farms. We analyzed the complete genomes of 571 Taiwanese PCV2 isolates in Taiwan from 2001 to 2011 and divided the isolates into 2 distinct genotypes (PCV2a and PCV2b) with 6 clusters (1A, 1B, 1C, 2B, 2D, and 2E). Of the 571 Taiwanese PCV2 isolates, 22.9% (131/571) belonged to PCV2a and 77.1% (440/571) to PCV2b. In this study, PCV2a isolates were the most common in 2001, and then PCV2b isolates became predominate thereafter and widely distributed in pig farms since 2003. Sequence comparisons among the 571 isolates indicated that 89.6-100% had nucleotide identity for complete genome and 87.3-100% for open reading frames 2 (ORF2). The results suggest that a higher genetic variation and shift occurred among PCV2 isolates collected from 2001 to 2011 in Taiwan.


The effect of infection order of porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus on dually infected swine alveolar macrophages.

  • Yi-Chieh Tsai‎ et al.
  • BMC veterinary research‎
  • 2012‎

Concurrent infection with porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) is known as one of the major causes for porcine respiratory disease complex (PRDC). Dual infection with PCV2 and PRRSV is consistently to have more severe clinical presentations and pulmonary lesions than infection with PCV2 alone or PRRSV alone. However, it is not known if dual infections with PCV2 and PRRSV in different infection order may lead to different clinical symptoms in the host. To mimic the possible field conditions, swine alveolar macrophages (AMs) were inoculated with PCV2 and PRRSV in vitro simultaneously or with one virus 18 h earlier than the other. The cell viability, cytopathic effects, antigen-containing rates, phagocytotic and microbial killing capabilities, cytokine profiles (IL-8, TNF-α, and IFN-α) and FasL transcripts were determined, analyzed, and compared to prove the hypothesis.


Morphological and immunological evidence of a unique selective production and endoplasmic reticular accumulation of interleukin-1alpha in rat peritoneal macrophages induced by Pseudomonas aeruginosa exotoxin A.

  • Yen-Te Huang‎ et al.
  • Cellular immunology‎
  • 2003‎

The immunotoxicity of Pseudomonas aeruginosa exotoxin A (ETA) on macrophages was evaluated by incubating rat peritoneal macrophages (RPM) with 1-100 ng/ml ETA for 3-60 h. Although the overall changes in cell viability and DNA, RNA, and protein synthesis of the ETA-treated RPM (E-RPM) were reduced in a dose- and time-dependent manner, there was a transient but evident rebound in RNA and/or protein synthesis at 24-36 h post-incubation (HPI) at 1-50 ng/ml ETA. However, a more apparent enhancement appeared in RNA and protein synthesis at 36-48 HPI in 10 and 50 ng/ml E-RPM after normalized on the basis of viable cell. Most 50-100 ng/ml E-RPM underwent necrosis/apoptosis before 24 HPI. By 36 HPI, 41% of 10 ng/ml E-RPM remained viable but were full of cytoplasmic granules due to the accumulation of glycoprotein in segmentally dilated endoplasmic reticulum. Immunological staining of the granules revealed strong IL-1alpha but weak or no signals for IL-1beta, IL-1 receptor antagonist, IL-6, and TNF-alpha. A time-dependent increase in IL-1alpha but no IL-1beta was detected in cell lysate of 10 ng/ml E-RPM; however, neither IL-1alpha nor IL-1beta was detected in culture supernatant. Thus, besides cytopathic and functional effects, ETA could induce a unique selective production and endoplasmic reticular accumulation of IL-1alpha in RPM.


The Characterization of Immunoprotection Induced by a cDNA Clone Derived from the Attenuated Taiwan Porcine Epidemic Diarrhea Virus Pintung 52 Strain.

  • Chi-Fei Kao‎ et al.
  • Viruses‎
  • 2018‎

The porcine epidemic diarrhea virus (PEDV) poses a great threat to the global swine industries and the unreliable protection induced by the currently available vaccines remains a major challenge. We previously generated a genogroup 2b (G2b) PEDV Taiwan Pintung 52 (PEDVPT) strain, PEDVPT-P96, and determined its promising host immune response against the virulent PEDVPT-P5 strain. To study the attenuation determinants of PEDVPT-P96 and establish a PEDVPT-P96-based recombinant vector as a vaccine platform for further antigenicity modification, iPEDVPT-P96, a full-length cDNA clone of PEDVPT-P96, was established. Comparing to the parental PEDVPT-P96 virus, the iPEDVPT-P96 virus showed efficient replication kinetics with a delayed decline of viral load and similar but much more uniform plaque sizes in Vero cells. In the 5-week-old piglet model, fecal viral shedding was observed in the PEDVPT-P96-inoculated piglets, whereas those inoculated with iPEDVPT-P96 showed neither detectable fecal viral shedding nor PEDV-associated clinical signs. Moreover, inoculation with iPEDVPT-P96 elicited comparable levels of anti-PEDV specific plasma IgG and fecal/salivary IgA, neutralizing antibody titers, and similar but less effective immunoprotection against the virulent PEDVPT-P5 challenge compared to the parental PEDVPT-P96. In the present study, an infectious cDNA clone of an attenuated G2b PEDV strain was successfully generated for the first time, and the in vitro and in vivo data indicate that iPEDVPT-P96 is further attenuated but remains immunogenic compared to its parental PEDVPT-P96 viral stock. The successful development of the iPEDVPT-P96 cDNA clone could allow for the manipulation of the viral genome to study viral pathogenesis and facilitate the rapid development of effective vaccines.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: