Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 153 papers

Sulforaphane attenuates EGFR signaling in NSCLC cells.

  • Chi-Yuan Chen‎ et al.
  • Journal of biomedical science‎
  • 2015‎

EGFR, a receptor tyrosine kinase (RTK), is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs) have been widely used in the treatment of many cancers, including NSCLC. However, intrinsic and acquired resistance to TKI remains a common obstacle. One strategy that may help overcome EGFR-TKI resistance is to target EGFR for degradation. As EGFR is a client protein of heat-shock protein 90 (HSP90) and sulforaphane is known to functionally regulate HSP90, we hypothesized that sulforaphane could attenuate EGFR-related signaling and potentially be used to treat NSCLC.


Daxx inhibits hypoxia-induced lung cancer cell metastasis by suppressing the HIF-1α/HDAC1/Slug axis.

  • Ching-Wen Lin‎ et al.
  • Nature communications‎
  • 2016‎

Hypoxia is a major driving force of cancer invasion and metastasis. Here we show that death domain-associated protein (Daxx) acts to negatively regulate hypoxia-induced cell dissemination and invasion by inhibiting the HIF-1α/HDAC1/Slug pathway. Daxx directly binds to the DNA-binding domain of Slug, impeding histone deacetylase 1 (HDAC1) recruitment and antagonizing Slug E-box binding. This, in turn, stimulates E-cadherin and occludin expression and suppresses Slug-mediated epithelial-mesenchymal transition (EMT) and cell invasiveness. Under hypoxic conditions, stabilized hypoxia-inducible factor (HIF)-1α downregulates Daxx expression and promotes cancer invasion, whereas re-expression of Daxx represses hypoxia-induced cancer invasion. Daxx also suppresses Slug-mediated lung cancer metastasis in an orthotopic lung metastasis mouse model. Using clinical tumour samples, we confirmed that the HIF-1α/Daxx/Slug pathway is an outcome predictor. Our results support that Daxx can act as a repressor in controlling HIF-1α/HDAC1/Slug-mediated cancer cell invasion and is a potential therapeutic target for inhibition of cancer metastasis.


The antitumor agent PBT-1 directly targets HSP90 and hnRNP A2/B1 and inhibits lung adenocarcinoma growth and metastasis.

  • Chi-Yuan Chen‎ et al.
  • Journal of medicinal chemistry‎
  • 2014‎

Natural products are the major sources of currently available anticancer drugs. We recently reported that phenanthrene-based tylophorine derivative-1 (PBT-1) may be a potential antitumor agent for lung adenocarcinoma. We therefore examined the direct targets of PBT-1 and their effects in inhibiting lung adenocarcinoma. We found that PBT-1 reduced the level of Slug and inhibits the migration, invasion, and filopodia formation of lung adenocarcinoma CL1-5 cells in vitro. In addition, PBT-1 displayed in vivo antitumor and antimetastasis activities against subcutaneous and orthotopic xenografts of CL1-5 cells in nude mice. Chemical proteomics showed that heat shock protein 90 (HSP90) and heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) bound PBT-1 in CL1-5 cells. Inhibition of HSP90 and hnRNP A2/B1 reduced the activation of AKT and Slug expression. Taken together, these findings suggest that PBT-1 binds to HSP90 and/or hnRNP A2/B1 and initiates antitumor activities by affecting Slug- and AKT-mediated metastasis and tumorigenesis.


Lapatinib inhibits CIP2A/PP2A/p-Akt signaling and induces apoptosis in triple negative breast cancer cells.

  • Chun-Yu Liu‎ et al.
  • Oncotarget‎
  • 2016‎

We tested the efficacy of lapatinib, a dual tyrosine kinase inhibitor which interrupts the HER2 and epidermal growth factor receptor (EGFR) pathways, in a panel of triple-negative breast cancer (TNBC) cells, and examined the drug mechanism. Lapatinib showed an anti-proliferative effect in HCC 1937, MDA-MB-468, and MDA-MB-231 cell lines. Lapatinib induced significant apoptosis and inhibited CIP2A and p-Akt in a dose and time-dependent manner in the three TNBC cell lines. Overexpression of CIP2A reduced lapatinib-induced apoptosis in MDA-MB-468 cells. In addition, lapatinib increased PP2A activity (in relation to CIP2A inhibition). Moreover, lapatinib-induced apoptosis and p-Akt downregulation was attenuated by PP2A antagonist okadaic acid. Furthermore, lapatinib indirectly decreased CIP2A transcription by disturbing the binding of Elk1 to the CIP2A promoter. Importantly, lapatinib showed anti-tumor activity in mice bearing MDA-MB-468 xenograft tumors, and suppressed CIP2A as well as p-Akt in these xenografted tumors. In summary, inhibition of CIP2A determines the effects of lapatinib-induced apoptosis in TNBC cells. In addition to being a dual tyrosine kinase inhibitor of HER2 and EGFR, lapatinib also inhibits CIP2A/PP2A/p-Akt signaling in TNBC cells.


Long noncoding RNA CPS1-IT1 suppresses the metastasis of hepatocellular carcinoma by regulating HIF-1α activity and inhibiting epithelial-mesenchymal transition.

  • Tong-Hong Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Recently, increasing numbers of long noncoding RNAs (lncRNAs), with both oncogenic and tumor-suppressive potential, have been found to be aberrantly expressed in various human cancers. However, the function of lncRNAs in hepatocellular carcinoma (HCC) progression remains largely unknown. In this study, we performed a comprehensive microarray analysis of lncRNA expression using human HCC specimens. After validation in 119 human HCC tissues, we identified a novel tumor suppressor lncRNA, CPS1 intronic transcript 1 (CPS1-IT1). To elucidate the clinical significance of CPS1-IT1 in HCC, correlations between CPS1-IT1 levels, clinical parameters, and survival outcomes were analyzed. In vitro and in vivo functional assays were also performed to dissect the potential underlying mechanisms. Expression of CPS1-IT1 was significantly decreased in 73% of HCC tissues, and patients with low CPS1-IT1 expression had poor survival outcomes. Furthermore, in vitro functional assays indicated that CPS1-IT1 significantly reduced cell proliferation, migration and invasion capacities through reduced Hsp90 binding to and activation of HIF-1α, thereby suppressing the epithelial-mesenchymal transition (EMT). An in vivo animal model also demonstrated the tumor suppressor role of CPS1- IT1 via decreased tumor growth and metastasis. In conclusion, lncRNA CPS1-IT1 acts as a tumor suppressor in HCC by reducing HIF-1α activation and suppressing EMT. The findings of this study establish a function for CPS1-IT1 in HCC progression and suggest its potential as a new prognostic biomarker and target for HCC therapy.


Study of Patients' Willingness to Pay for a Cure of Chronic Obstructive Pulmonary Disease in Taiwan.

  • Yi-Ting Chen‎ et al.
  • International journal of environmental research and public health‎
  • 2016‎

Chronic Obstructive Pulmonary Disease (COPD) is one of the fastest growing causes of death worldwide. However, few studies, if any, have been conducted that have investigated patient profiles in Asia. This paper analyzes patient willingness to pay (WTP) as a function of patient disease severity, health-related quality of life (HRQL), and smoking behavior in Taiwan.


Epstein-Barr virus-encoded LMP1 interacts with FGD4 to activate Cdc42 and thereby promote migration of nasopharyngeal carcinoma cells.

  • Hao-Ping Liu‎ et al.
  • PLoS pathogens‎
  • 2012‎

Epstein-Barr virus (EBV) is closely associated with nasopharyngeal carcinoma (NPC), a human malignancy notorious for its highly metastatic nature. Among EBV-encoded genes, latent membrane protein 1 (LMP1) is expressed in most NPC tissues and exerts oncogenicity by engaging multiple signaling pathways in a ligand-independent manner. LMP1 expression also results in actin cytoskeleton reorganization, which modulates cell morphology and cell motility- cellular process regulated by RhoGTPases, such as Cdc42. Despite the prominent association of Cdc42 activation with tumorigenesis, the molecular basis of Cdc42 activation by LMP1 in NPC cells remains to be elucidated. Here using GST-CBD (active Cdc42-binding domain) as bait in GST pull-down assays to precipitate active Cdc42 from cell lysates, we demonstrated that LMP1 acts through its transmembrane domains to preferentially induce Cdc42 activation in various types of epithelial cells, including NPC cells. Using RNA interference combined with re-introduction experiments, we identified FGD4 (FYVE, RhoGEF and PH domain containing 4) as the GEF (guanine nucleotide exchange factor) responsible for the activation of Cdc42 by LMP1. Serial deletion experiments and co-immunoprecipitation assays further revealed that ectopically expressed FGD4 modulated LMP1-mediated Cdc42 activation by interacting with LMP1. Moreover, LMP1, through its transmembrane domains, directly bound FGD4 and enhanced FGD4 activity toward Cdc42, leading to actin cytoskeleton rearrangement and increased motility of NPC cells. Depletion of FGD4 or Cdc42 significantly reduced (∼50%) the LMP1-stimulated cell motility, an effect that was partially reversed by expression of a constitutively active mutant of Cdc42. Finally, quantitative RT-PCR and immunohistochemistry analyses showed that FGD4 and LMP1 were expressed in NPC tissues, supporting the potential physiologically relevance of this mechanism in NPC. Collectively, our results not only uncover a novel mechanism underlying LMP1-mediated Cdc42 activation, namely LMP1 interaction with FGD4, but also functionally link FGD4 to NPC tumorigenesis.


Distinct population of highly malignant cells in a head and neck squamous cell carcinoma cell line established by xenograft model.

  • Chi-Yuan Chen‎ et al.
  • Journal of biomedical science‎
  • 2009‎

The progression and metastasis of solid tumors, including head and neck squamous cell carcinoma (HNSCC), have been related to the behavior of a small subpopulation of cancer stem cells. Here, we have established a highly malignant HNSCC cell line, SASVO3, from primary tumors using three sequential rounds of xenotransplantation. SASVO3 possesses enhanced tumorigenic ability both in vitro and in vivo. Moreover, SASVO3 exhibits properties of cancer stem cells, including that increased the abilities of sphere-forming, the number of side population cells, the potential of transplanted tumor growth and elevated expression of the stem cell marker Bmi1. Injection of SASVO3 into the tail vein of nude mice resulted in lung metastases. These results are consistent with the postulate that the malignant and/or metastasis potential of HNSCC cells may reside in a stem-like subpopulation.


Early activation of bradykinin B2 receptor aggravates reactive oxygen species generation and renal damage in ischemia/reperfusion injury.

  • Wen-Chih Chiang‎ et al.
  • Free radical biology & medicine‎
  • 2006‎

The kallikrein/kinin system is beneficial in ischemia/reperfusion injury in heart, controversial in brain, but detrimental in lung, liver, and intestine. We examined the role of the kallikrein/kinin system in acute ischemia/reperfusion renal injury induced by 40 min occlusion of the renal artery followed by reperfusion. Rats were infused with tissue kallikrein protein 5 days before (pretreated group) or after (treated group) ischemia. Two days later, the pretreated group exhibited the worst renal dysfunction, followed by the treated group, then the control group. Kallikrein increased tubular necrosis and inflammatory cell infiltration with generation of more tumor necrosis factor-alpha and monocyte chemoattractant protein-1. Reactive oxygen species (ROS), malondialdehyde, and reduced/oxidized glutathione measurement revealed that the oxidative stress was augmented by kallikrein administration in both ischemic and reperfusion phases. The groups with more ROS generation also had more apoptotic renal cells. The deleterious effects of kallikrein on ischemia/reperfusion injury were reversed by cotreatment with bradykinin B2 receptor (B2R) antagonist, but not B1 receptor antagonist, and were not associated with hemodynamic changes. We conclude that early activation of B2R augmented ROS generation in ischemia/reperfusion renal injury, resulting in subsequent apoptosis, inflammation, and tissue damage. This finding suggests the potential application of B2R antagonists in acute ischemic renal disease associated with bradykinin activation.


Meta-Analysis: Urinary Calprotectin for Discrimination of Intrinsic and Prerenal Acute Kidney Injury.

  • Jia-Jin Chen‎ et al.
  • Journal of clinical medicine‎
  • 2019‎

Background: Urinary calprotectin is a novel biomarker that distinguishes between intrinsic or prerenal acute kidney injury (AKI) in different studies. However, these studies were based on different populations and different AKI criteria. We evaluated the diagnostic accuracy of urinary calprotectin and compared its diagnostic performance in different AKI criteria and study populations. Method: In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched PubMed, Embase, and the Cochrane database up to September 2018. The diagnostic performance of urinary calprotectin (sensitivity, specificity, predictive ratio, and cutoff point) was extracted and evaluated. Result: This study included six studies with a total of 502 patients. The pooled sensitivity and specificity were 0.90 and 0.93, respectively. The pooled positive likelihood ratio (LR) was 15.15, and the negative LR was 0.11. The symmetric summary receiver operating characteristic (symmetric SROC) with pooled diagnostic accuracy was 0.9667. The relative diagnostic odds ratio (RDOC) of the adult to pediatric population and RDOCs of different acute kidney injury criteria showed no significant difference in their diagnostic accuracy. Conclusion: Urinary calprotectin is a good diagnostic tool for the discrimination of intrinsic and prerenal AKI under careful inspection after exclusion of urinary tract infection and urogenital malignancies. Its performance is not affected by different AKI criteria and adult or pediatric populations.


Intramolecular Phosphacyclization: Polyaromatic Phosphonium P-Heterocycles with Wide-Tuning Optical Properties.

  • Andrey Belyaev‎ et al.
  • Chemistry (Weinheim an der Bergstrasse, Germany)‎
  • 2019‎

Rationally designed cationic phospha-polyaromatic fluorophores were prepared through intramolecular cyclization of the tertiary ortho-(acene)phenylene-phosphines mediated by CuII triflate. As a result of phosphorus quaternization, heterocyclic phosphonium salts 1 c-3 c, derived from naphthalene, phenanthrene, and anthracene cores, exhibited very intense blue to green fluorescence (Φem =0.38-0.99) and high photostability in aqueous medium. The structure-emission relationship was further investigated by tailoring the electron-donating functions to the anthracene moiety to give dyes 4 c-6 c with charge-transfer character. The latter significantly decreases the emission energy to reach near-IR region. Thus, the intramolecular phosphacyclization renders an ultra-wide tuning of fluorescence from 420 nm (1 c) to 780 nm (6 c) in solution, extended to 825 nm for 6 c in the solid state with quantum efficiency of approximately 0.07. The physical behavior of these new dyes was studied spectroscopically, crystallographically, and electrochemically, whereas computational analysis was used to correlate the experimental data with molecular electronic structures. The excellent stability, water solubility, and attractive photophysical characteristics make these phosphonium heterocycles powerful tools in cell imaging.


miR-148a inhibits early relapsed colorectal cancers and the secretion of VEGF by indirectly targeting HIF-1α under non-hypoxia/hypoxia conditions.

  • Hsiang-Lin Tsai‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Vascular endothelial growth factor (VEGF) is correlated with angiogenesis and early relapse of colorectal cancer (CRC). This study investigated the role of miR-148a in the regulation of VEGF/angiogenesis and early relapse of CRC. We established a stable clone with miR-148a expression in HCT116 and HT29 cell lines and created a hypoxic condition by using CoCl2 to determine the underlying mechanism of miR-148a. The effects of miR-148a on the phosphoryl-ERK (pERK)/hypoxia-inducible factor-1α (HIF-1α)/VEGF pathway were evaluated through Western blotting and the inhibitory effect of miR-148a on angiogenesis was demonstrated through a tube formation assay. Sixty-three CRC tissues (28 early relapse and 35 non-early relapse) were analysed to assess the relationship between miR-148a and HIF-1α/VEGF. The protein expression of pERK/HIF-1α/VEGF in HCT116 and HT29 cells was significantly decreased by miR-148a (all P < 0.05). The protein expression of VEGF/HIF-1α was strongly inversely associated with the expression of miR-148a in the 63 CRC tissue samples (all P < 0.05). Tube formation assay demonstrated that miR-148a significantly obliterated angiogenesis. miR-148a suppresses VEGF through down-regulation of the pERK/HIF-1α/VEGF pathway and might lead to the inhibition of angiogenesis; miR-148a down-regulation increased the early relapse rate of CRC. This demonstrates that miR-148a is a potential diagnostic and therapeutic target.


Combination of palbociclib with enzalutamide shows in vitro activity in RB proficient and androgen receptor positive triple negative breast cancer cells.

  • Chun-Yu Liu‎ et al.
  • PloS one‎
  • 2017‎

Triple negative breast cancer (TNBC) lacks specific drug targets and remains challenging. Palbociclib, a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor is approved for metastatic estrogen receptor (ER)-positive and human epithermal growth factor 2 (HER2)-negative breast cancer. The nature of cell cycle inhibition by palbociclib suggests its potential in TNBC cells. Retinoblastoma (RB, a known substrate of CDK4/6) pathway deregulation is a frequent occurrence in TNBC and studies have revealed that pharmacological CDK4/6 inhibition induces a cooperative cytostatic effect with doxorubicin in RB-proficient TNBC models. In addition, recent studies reported that anti-androgen therapy shows preclinical efficacy in androgen-receptor (AR)-positive TNBC cells. Here we examined the effect of palbociclib in combination with an anti-androgen enzalutamide in TNBC cells.


Proteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions.

  • Kuo-An Wu‎ et al.
  • Scientific reports‎
  • 2017‎

Patients with pneumonia and parapneumonic effusion (PPE) have elevated mortality and a poor prognosis. The aim of this study was to discover novel biomarkers to help distinguish between uncomplicated PPE (UPPE) and complicated PPE (CPPE). Using an iTRAQ-based quantitative proteomics, we identified 766 proteins in pleural effusions from PPE patients. In total, 45 of these proteins were quantified as upregulated proteins in CPPE. Four novel upregulated candidates (BPI, NGAL, AZU1, and calprotectin) were selected and further verified using enzyme-linked immunosorbent assays (ELISAs) on 220 patients with pleural effusions due to different causes. The pleural fluid levels of BPI, NGAL, AZU1, and calprotectin were significantly elevated in patients with CPPE. Among these four biomarkers, BPI had the best diagnostic value for CPPE, with an AUC value of 0.966, a sensitivity of 97%, and a specificity of 91.4%. A logistic regression analysis demonstrated a strong association between BPI levels > 10 ng/ml and CPPE (odds ratio = 341.3). Furthermore, the combination of pleural fluid BPI levels with LDH levels improved the sensitivity and specificity to 100% and 91.4%, respectively. Thus, our findings provided a comprehensive effusion proteome data set for PPE biomarker discovery and revealed novel biomarkers for the diagnosis of CPPE.


Application of ribonucleoside vanadyl complex (RVC) for developing a multifunctional tissue preservative solution.

  • Tzong-Ming Shieh‎ et al.
  • PloS one‎
  • 2018‎

The quality of biological samples greatly affects the accuracy of scientific results. However, RNA in cryopreserved tissues gradually degrades during storage, leading to errors in the results of subsequent experiments. A suitable sample preservative solution can prolong storage and enhance the research value of samples. Here, we developed a sample preservative solution using the properties of the ribonucleoside vanadyl complex (RVC) and compared its effects on RNA and DNA quality, protein activity, and tissue morphology with the commercially available and widely used RNAlater® Stabilization Solution. The results showed that both the RVC-based preservative solution and RNAlater can effectively delay RNA degradation in tissue samples stored at 4°C or -80°C compared with samples stored without any preservative solution. In contrast to RNAlater, the RVC-based preservative solution did not result in damage to the tissue morphology or a loss of protein activity. Additionally, the RVC-based preservative solution did not affect the RNA and genomic DNA contents of the tissue samples or the results of subsequent experimental analyses. An RVC-based reagent can be used as a multifunctional yet relatively inexpensive tissue preservative solution to provide a comprehensive and cost-effective method for preserving samples for tissue banks.


Mouse Models of Human Gastric Cancer Subtypes With Stomach-Specific CreERT2-Mediated Pathway Alterations.

  • Therese Seidlitz‎ et al.
  • Gastroenterology‎
  • 2019‎

Patterns of genetic alterations characterize different molecular subtypes of human gastric cancer. We aimed to establish mouse models of these subtypes.


Impaired inflammasome activation and bacterial clearance in G6PD deficiency due to defective NOX/p38 MAPK/AP-1 redox signaling.

  • Wei-Chen Yen‎ et al.
  • Redox biology‎
  • 2020‎

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway that modulates cellular redox homeostasis via the regeneration of NADPH. G6PD-deficient cells have a reduced ability to induce the innate immune response, thus increasing host susceptibility to pathogen infections. An important part of the immune response is the activation of the inflammasome. G6PD-deficient peripheral blood mononuclear cells (PBMCs) from patients and human monocytic (THP-1) cells were used as models to investigate whether G6PD modulates inflammasome activation. A decreased expression of IL-1β was observed in both G6PD-deficient PBMCs and PMA-primed G6PD-knockdown (G6PD-kd) THP-1 cells upon lipopolysaccharide (LPS)/adenosine triphosphate (ATP) or LPS/nigericin stimulation. The pro-IL-1β expression of THP-1 cells was decreased by G6PD knockdown at the transcriptional and translational levels in an investigation of the expression of the inflammasome subunits. The phosphorylation of p38 MAPK and downstream c-Fos expression were decreased upon G6PD knockdown, accompanied by decreased AP-1 translocation into the nucleus. Impaired inflammasome activation in G6PD-kd THP-1 cells was mediated by a decrease in the production of reactive oxygen species (ROS) by NOX signaling, while treatment with hydrogen peroxide (H2O2) enhanced inflammasome activation in G6PD-kd THP-1 cells. G6PD knockdown decreased Staphylococcus aureus and Escherichia coli clearance in G6PD-kd THP-1 cells and G6PD-deficient PBMCs following inflammasome activation. These findings support the notion that enhanced pathogen susceptibility in G6PD deficiency is, in part, due to an altered redox signaling, which adversely affects inflammasome activation and the bactericidal response.


2-O-Methylmagnolol, a Magnolol Derivative, Suppresses Hepatocellular Carcinoma Progression via Inhibiting Class I Histone Deacetylase Expression.

  • Chi-Yuan Chen‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Magnolia officinalis is widely used in Southeast Asian countries for the treatment of fever, headache, diarrhea, and stroke. Magnolol is a phenolic compound extracted from M. officinalis, with proven antibacterial, antioxidant, anti-inflammatory, and anticancer activities. In this study, we modified magnolol to synthesize a methoxylated derivative, 2-O-methylmagnolol (MM1), and investigated the use of MM1, and magnolol in the treatment of liver cancer. We found that both magnolol and MM1 exhibited inhibitory effects on the growth, migration, and invasion of hepatocellular carcinoma (HCC) cell lines and halted the cell cycle at the G1 phase. MM1 also demonstrated a substantially better tumor-suppressive effect than magnolol. Further analysis suggested that by inhibiting class I histone deacetylase expression in HCC cell lines, magnolol and MM1 induced p21 expression and p53 activation, thereby causing cell cycle arrest and inhibiting HCC cell growth, migration, and invasion. Subsequently, we verified the significant tumor-suppressive effects of magnolol and MM1 in an animal model. Collectively, these findings demonstrate the anti-HCC activities of magnolol and MM1 and their potential for clinical use.


Glucose-Insulin-Potassium Alleviates Intestinal Mucosal Barrier Injuries Involving Decreased Expression of Uncoupling Protein 2 and NLR Family-Pyrin Domain-Containing 3 Inflammasome in Polymicrobial Sepsis.

  • Jun-Liang Zhang‎ et al.
  • BioMed research international‎
  • 2017‎

Uncoupling protein 2 (UCP2) may be critical for intestinal barrier function which may play a key role in the development of sepsis, and insulin has been reported to have anti-inflammatory effects. Male Sprague-Dawley rats were randomly allocated into five groups: control group, cecal ligation and puncture (CLP) group, sham surgery group, CLP plus glucose-insulin-potassium (GIK) group, and CLP plus glucose and potassium (GK) group. Ileum tissues were collected at 24 h after surgery. Histological and cytokine analyses, intestinal permeability tests, and western blots of intestinal epithelial tight junction component proteins and UCP2 were performed. Compared with CLP group, the CLP + GIK group had milder histological damage, lower levels of cytokines in the serum and ileum tissue samples, and lower UCP2 expression, whereas the CLP + GK group had no such effects. Moreover, the CLP + GIK group exhibited decreased epithelial permeability of the ileum and increased expression of zonula occludens-1, occludin, and claudin-1 in the ileum. The findings demonstrated that the UCP2 and NLR family-pyrin domain-containing 3/caspase 1/interleukin 1β signaling pathway may be involved in intestinal barrier injury and that GIK treatment decreased intestinal barrier permeability. Thus, GIK may be a useful treatment for intestinal barrier injury during sepsis.


Targeting fibroblast CD248 attenuates CCL17-expressing macrophages and tissue fibrosis.

  • Chen-Hsueh Pai‎ et al.
  • Scientific reports‎
  • 2020‎

The role of fibroblasts in tissue fibrosis has been extensively studied. Activated fibroblasts, namely myofibroblasts, produce pathological extracellular matrix. CD248, a type I transmembrane glycoprotein, is expressed in fibroblasts after birth. In human chronic kidney disease, upregulated CD248 in myofibroblasts is linked to poor renal survival. In this study, we demonstrated a novel interaction between CD248 and macrophages to be a key step in mediating tissue fibrosis. CD248 was upregulated in myofibroblasts in murine models of renal and peritoneal fibrosis. Cd248 knockout (Cd248-/-) could attenuate both renal and peritoneal fibrosis. By parabiosis of GFP reporter mice and Cd248-/- mice, we showed that attenuation of renal fibrosis was associated with a decrease of macrophage infiltration in Cd248-/- mice. Moreover, decrease of chemokine (C-C motif) ligand 17 and Ccl22 was found in macrophages isolated from the fibrotic kidneys of Cd248-/- mice. Because galectin-3-deficient macrophages showed decreased Ccl17 and Ccl22 in fibrotic kidneys, we further demonstrated that CD248 interacted specifically with galectin-3 of macrophages who then expressed CCL17 to activate collagen production in myofibroblasts. Mice with DNA vaccination targeting CD248 showed decreased fibrosis. We thus propose that CD248 targeting should be studied in the clinical tissue fibrosis setting.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: