Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 54 papers

Association of the RYR3 gene polymorphisms with atherosclerosis in elderly Japanese population.

  • Chenxi Zhao‎ et al.
  • BMC cardiovascular disorders‎
  • 2014‎

The Ryanodine receptor 3 gene (RYR3) encodes an intracellular calcium channel that mediates the efflux of Ca2+ from intracellular stores. Two single-nucleotide polymorphisms (SNPs) in the RYR3 gene have been shown to associate with stroke (rs877087) and carotid intima-media thickness (rs2229116) in two independent genome-wide association studies (GWAS) in Caucasian. We investigated the effect of these two SNPs as well as the 31.1 kilobases spanning region on atherosclerosis in Japanese population.


Understanding the structural and energetic basis of PD-1 and monoclonal antibodies bound to PD-L1: A molecular modeling perspective.

  • Danfeng Shi‎ et al.
  • Biochimica et biophysica acta. General subjects‎
  • 2018‎

The inhibitors blocking the interaction between programmed cell death protein 1(PD-1) and programmed death-ligand 1(PD-L1) can activate the immune response of T cell and eliminate cancer cells. The crystallographic studies have provided structural insights of the interactive interfaces between PD-L1 and its protein ligands. However, the hotspot residues on PD-L1 as well as structural and energetic basis for different protein ligands still need to be further investigated.


The E3 Ubiquitin Ligase TRIM21 Promotes HBV DNA Polymerase Degradation.

  • Ting Mu‎ et al.
  • Viruses‎
  • 2020‎

The tripartite motif (TRIM) protein family is an E3 ubiquitin ligase family. Recent reports have indicated that some TRIM proteins have antiviral functions, especially against retroviruses. However, most studies mainly focus on the relationship between TRIM21 and interferon or other antiviral effectors. The effect of TRIM21 on virus-encoded proteins remains unclear. In this study, we screened candidate interacting proteins of HBV DNA polymerase (Pol) by FLAG affinity purification and mass spectrometry assay and identified TRIM21 as its regulator. We used a coimmunoprecipitation (co-IP) assay to demonstrate that TRIM21 interacted with the TP domain of HBV DNA Pol. In addition, TRIM21 promoted the ubiquitination and degradation of HBV DNA Pol using its RING domain, which has E3 ubiquitin ligase activity. Lys260 and Lys283 of HBV DNA Pol were identified as targets for ubiquitination mediated by TRIM21. Finally, we uncovered that TRIM21 degrades HBV DNA Pol to restrict HBV DNA replication, and its SPRY domain is critical for this activity. Taken together, our results indicate that TRIM21 suppresses HBV DNA replication mainly by promoting the ubiquitination of HBV DNA Pol, which may provide a new potential target for the treatment of HBV.


Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation.

  • Jinhui Chen‎ et al.
  • Nature plants‎
  • 2019‎

The genus Liriodendron belongs to the family Magnoliaceae, which resides within the magnoliids, an early diverging lineage of the Mesangiospermae. However, the phylogenetic relationship of magnoliids with eudicots and monocots has not been conclusively resolved and thus remains to be determined1-6. Liriodendron is a relict lineage from the Tertiary with two distinct species-one East Asian (L. chinense (Hemsley) Sargent) and one eastern North American (L. tulipifera Linn)-identified as a vicariad species pair. However, the genetic divergence and evolutionary trajectories of these species remain to be elucidated at the whole-genome level7. Here, we report the first de novo genome assembly of a plant in the Magnoliaceae, L. chinense. Phylogenetic analyses suggest that magnoliids are sister to the clade consisting of eudicots and monocots, with rapid diversification occurring in the common ancestor of these three lineages. Analyses of population genetic structure indicate that L. chinense has diverged into two lineages-the eastern and western groups-in China. While L. tulipifera in North America is genetically positioned between the two L. chinense groups, it is closer to the eastern group. This result is consistent with phenotypic observations that suggest that the eastern and western groups of China may have diverged long ago, possibly before the intercontinental differentiation between L. chinense and L. tulipifera. Genetic diversity analyses show that L. chinense has tenfold higher genetic diversity than L. tulipifera, suggesting that the complicated regions comprising east-west-orientated mountains and the Yangtze river basin (especially near 30° N latitude) in East Asia offered more successful refugia than the south-north-orientated mountain valleys in eastern North America during the Quaternary glacial period.


A novel, minimally invasive technique to establish the animal model of spinal cord injury.

  • Huiquan Duan‎ et al.
  • Annals of translational medicine‎
  • 2021‎

Spinal cord injury (SCI) is a traumatic disease that is associated with high morbidity, disability, and mortality worldwide. The animal spinal cord contusion model is similar to clinical SCI; therefore, this model is often used to study the pathophysiological changes and treatment strategies for humans after SCI. The present study aimed to introduce a novel, minimally invasive technique to establish an SCI model, and to evaluate its advantages compared with conventional methods.


Chromosome-Level Genome Assembly and Annotation of the Fiber Flax (Linum usitatissimum) Genome.

  • Rula Sa‎ et al.
  • Frontiers in genetics‎
  • 2021‎

No abstract available


Chromosome-scale Genome Assembly of the Yellow Nutsedge (Cyperus esculentus).

  • Xiaoqing Zhao‎ et al.
  • Genome biology and evolution‎
  • 2023‎

The yellow nutsedge (Cyperus esculentus L. 1753) is an unconventional oil plant with oil-rich tubers, and a potential alternative for traditional oil crops. Here, we reported the first high-quality and chromosome-level genome assembly of the yellow nutsedge generated by combining PacBio HiFi long reads, Novaseq short reads, and Hi-C data. The final genome size is 225.6 Mb with an N50 of 4.3 Mb. More than 222.9 Mb scaffolds were anchored to 54 pseudochromosomes with a BUSCO score of 96.0%. We identified 76.5 Mb (33.9%) repetitive sequences across the genome. A total of 23,613 protein-coding genes were predicted in this genome, of which 22,847 (96.8%) were functionally annotated. A whole-genome duplication event was found after the divergence of Carex littledalei and Rhynchospora breviuscula, indicating the rich genetic resources of this species for adaptive evolution. Several significantly enriched GO terms were related to invasiveness of the yellow nutsedge, which may explain its plastic adaptability. In addition, several enriched Kyoto Encyclopedia of Genes and Genomes pathways and expanded gene families were closely related with substances in tubers, partially explaining the genomic basis of characteristics of this oil-rich tuber.


Trends and focuses of hantavirus researches: a global bibliometric analysis and visualization from 1980 to 2020.

  • Xiao Wei‎ et al.
  • Archives of public health = Archives belges de sante publique‎
  • 2022‎

There have been worldwide changes in the researches on hantaviruses in the past several decades. Nevertheless, there are few bibliometric analysis studies this field. We aim to evaluate and visualize the research focuses and trends of this field using a bibliometric analysis way to help understand the developmet and future hotspots of this field.


Diversity and functional prediction of fungal communities in different segments of mongolian horse gastrointestinal tracts.

  • Yiping Zhao‎ et al.
  • BMC microbiology‎
  • 2023‎

Anaerobic fungi are effective fibre-degrading microorganisms in the digestive tract of horses. However, our understanding of their diversity and community structure is limited, especially in different parts of the gastrointestinal tract.


Targeting ANXA7/LAMP5-mTOR axis attenuates spinal cord injury by inhibiting neuronal apoptosis via enhancing autophagy in mice.

  • Na Li‎ et al.
  • Cell death discovery‎
  • 2023‎

Spinal cord injury (SCI) could lead to severe disabilities in motor and sensory functions, and cause a heavy burden on patient physiology and psychology due to lack of specific repair measures so far. ANXA7 is an annexin with Ca2+ -dependent GTPase activity, which were mainly expressed in neuron in spinal cord and downregulated significantly after SCI in mice. In our study, GTPase activity activation of ANXA7 plays the protective role in neuron after OGD/R through inhibiting neuron apoptosis, which mediated by enhancing autophagy via mTOR/TFEB pathway. We also discovered that ANXA7 has significant interaction with neural-specific lysosomal-associated membrane protein LAMP5, which together with ANXA7 regulates autophagy and apoptosis. Asp411 mutation of ANXA7 obviously impaired the interaction of ANXA7 and LAMP5 compared with the wild type. Furthermore, it was found that activation of ANXA7 could help to stabilize the protein expression of LAMP5. Overexpression of LAMP5 could attenuate the destruction of lysosomal acidic environment, inhibition of autophagy and activation of apoptosis caused by ANXA7 downregulation after OGD/R. We verified that injecting ANXA7 overexpression lentivirus and activation of ANXA7 both have significant repair effects on SCI mice by using CatWalk assay and immunohistochemistry staining. In summary, our findings clarify the new role of ANXA7 and LAMP5 in SCI, provided a new specific target of neuronal repair and discovered new molecular mechanisms of ANXA7 to regulate autophagy and apoptosis. Targeting ANXA7 may be a prospective therapeutic strategy for SCI in future.


A model based on meta-analysis to evaluate poor prognosis of patients with severe fever with thrombocytopenia syndrome.

  • Zishuai Liu‎ et al.
  • Frontiers in microbiology‎
  • 2023‎

Early identification of risk factors associated with poor prognosis in Severe fever with thrombocytopenia syndrome (SFTS) patients is crucial to improving patient survival.


Sesterterpene MHO7 suppresses breast cancer cells as a novel estrogen receptor degrader.

  • Yue Zhao‎ et al.
  • Pharmacological research‎
  • 2019‎

Breast cancer, the most prevalent cancer in women, remains the second in the list of cancer mortality, the majority of these fatalities resulted from estrogen receptor alpha (ERα) positive disease. ERα is well known for its function on breast cancer initiation and development and has become the most successful biomarker in breast cancers. Ophiobolins are sesterterpene compounds with a distinct tricyclic 5-8-5 ring and have presented anti-cancer activities. MHO7(6-epi-ophiobolin G)was isolated from products of a mangrove fungus in our previous research and demonstrated robust activity against breast cancer cells (BCCs). The investigation on the precise mechanism of MHO7 shows that MHO7 acts as a novel ERα down regulator different from the known molecules in ER + breast cancer cells. A whole-genome transcriptomic analysis on MCF-7 cells treated with MHO7 revealed the estrogen signaling pathway was the most affected pathway, and further evidence showed the de novo synthesis of ESR1 mRNA was inhibited. In addition, MHO7 down-regulated ERα at the protein level through multiple approaches. It not only bound to ERα, pushing helix 11 away in the agonist conformation but also increased the ERα degradation through the ubiquitin-proteasome system. These effects consequently caused decreasing of the transcriptional activity of ER modulation which was confirmed by the decreasing of estrogen receptor element (ERE) activity as well as downstream genes expressions like GREB1, BRCA1, MUC1 and CCND1. Combination of tamoxifen and MHO7 yield a synergistic effect on the inhibition of MCF-7 cells when treated around the IC50 values. Our results suggest that MHO7 is a very promising drug candidate and provides a novel drug version on ERα down-regulation to fighting with breast cancer.


SRSF1 facilitates cytosolic DNA-induced production of type I interferons recognized by RIG-I.

  • Feng Xue‎ et al.
  • PloS one‎
  • 2015‎

Evidence has shown that psoriasis is closely associated with infection; however, the mechanism of this association remains unclear. In mammalian cells, viral or bacterial infection is accompanied by the release of cytosolic DNA, which in turn triggers the production of type-I interferons (IFNs). Type I IFNs and their associated genes are significantly upregulated in psoriatic lesions. RIG-I is also highly upregulated in psoriatic lesions and is responsible for IFN production. However, RIG-I mediated regulatory signaling in psoriasis is poorly understood.


ANPrAod: Identify Antioxidant Proteins by Fusing Amino Acid Clustering Strategy and N-Peptide Combination.

  • Qilemuge Xi‎ et al.
  • Computational and mathematical methods in medicine‎
  • 2021‎

Antioxidant proteins perform significant functions in disease control and delaying aging which can prevent free radicals from damaging organisms. Accurate identification of antioxidant proteins has important implications for the development of new drugs and the treatment of related diseases, as they play a critical role in the control or prevention of cancer and aging-related conditions. Since experimental identification techniques are time-consuming and expensive, many computational methods have been proposed to identify antioxidant proteins. Although the accuracy of these methods is acceptable, there are still some challenges. In this study, we developed a computational model called ANPrAod to identify antioxidant proteins based on a support vector machine. In order to eliminate potential redundant features and improve prediction accuracy, 673 amino acid reduction alphabets were calculated by us to find the optimal feature representation scheme. The final model could produce an overall accuracy of 87.53% with the ROC of 0.7266 in five-fold cross-validation, which was better than the existing methods. The results of the independent dataset also demonstrated the excellent robustness and reliability of ANPrAod, which could be a promising tool for antioxidant protein identification and contribute to hypothesis-driven experimental design.


Anti-inflammatory activities of Gardenia jasminoides extracts in retinal pigment epithelial cells and zebrafish embryos.

  • Jianrong Chen‎ et al.
  • Experimental and therapeutic medicine‎
  • 2021‎

Age-related macular degeneration (AMD) is the most common cause of visual impairment in developed countries. Inflammation serves a critical role in the pathogenesis of AMD. Gardenia jasminoides is found in several regions of China and is traditionally used as an organic yellow dye but has also been widely used as a therapeutic agent in numerous diseases, including inflammation, depression, hepatic and vascular disorders, which may reflect the variability of functional compounds that are present in Gardenia jasminoides extracts (GJE). To investigate the therapeutic potential of GJE for AMD, ARPE-19 cells were treated with lipopolysaccharide (LPS) or LPS plus GJE. GJE significantly decreased LPS-induced expression of proinflammatory cytokines, including IL-1β, IL-6 and TNF-α. In the in vivo study, GJE inhibited CuSO4-induced migration of primitive macrophages to the lateral line in zebrafish embryos. GJE also attenuated expression of cytokines (IL-1β, IL-6 and TNF-α), NFKB activating protein (nkap) and TLR4 in ARPE-19 cells. The results of the present study demonstrated the anti-inflammatory potential of GJE in vitro and in vivo, and suggested GJE as a therapeutic candidate for AMD.


Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize.

  • Changsheng Li‎ et al.
  • Nature communications‎
  • 2020‎

Mutation of o2 doubles maize endosperm lysine content, but it causes an inferior kernel phenotype. Developing quality protein maize (QPM) by introgressing o2 modifiers (Mo2s) into the o2 mutant benefits millions of people in developing countries where maize is a primary protein source. Here, we report genome sequence and annotation of a South African QPM line K0326Y, which is assembled from single-molecule, real-time shotgun sequencing reads collinear with an optical map. We achieve a N50 contig length of 7.7 million bases (Mb) directly from long-read assembly, compared to those of 1.04 Mb for B73 and 1.48 Mb for Mo17. To characterize Mo2s, we map QTLs to chromosomes 1, 6, 7, and 9 using an F2 population derived from crossing K0326Y and W64Ao2. RNA-seq analysis of QPM and o2 endosperms reveals a group of differentially expressed genes that coincide with Mo2 QTLs, suggesting a potential role in vitreous endosperm formation.


Using a Material Library to Understand the Change of Tabletability by High Shear Wet Granulation.

  • Yawen Wang‎ et al.
  • Pharmaceutics‎
  • 2022‎

Understanding the tabletability change of materials after granulation is critical for the formulation and process design in tablet development. In this paper, a material library consisting of 30 pharmaceutical materials was used to summarize the pattern of change of tabletability during high shear wet granulation and tableting (HSWGT). Each powdered material and the corresponding granules were characterized by 19 physical properties and nine compression behavior classification system (CBCS) parameters. Principal component analysis (PCA) was used to compare the physical properties and compression behaviors of ungranulated powders and granules. A new index, namely the relative change of tabletability (CoTr), was proposed to quantify the tabletability change, and its advantages over the reworking potential were demonstrated. On the basis of CoTr values, the tabletability change classification system (TCCS) was established. It was found that approximately 40% of materials in the material library presented a loss of tabletability (i.e., Type I), 50% of materials had nearly unchanged tabletability (i.e., Type II), and 10% of materials suffered from increased tabletability (i.e., Type III). With the help of tensile strength (TS) vs. compression pressure curves implemented on both powders and granules, a data fusion method and the PLS2 algorithm were further applied to identify the differences in material properties requirements for direct compression (DC) and HSWGT. Results indicated that increasing the plasticity or porosity of the starting materials was beneficial to acquiring high TS of tablets made by HSWGT. In conclusion, the presented TCCS provided a means for the initial risk assessment of materials in tablet formulation design and the data modeling method helped to predict the impact of formulation ingredients on the strength of compacts.


PSMC3 promotes RNAi by maintaining AGO2 stability through USP14.

  • Yan Jia‎ et al.
  • Cellular & molecular biology letters‎
  • 2022‎

Argonaute 2 (AGO2), the only protein with catalytic activity in the human Argonaute family, is considered as a key component of RNA interference (RNAi) pathway. Here we performed a yeast two-hybrid screen using the human Argonaute 2 PIWI domain as bait to screen for new AGO2-interacting proteins and explored the specific mechanism through a series of molecular biology and biochemistry experiments.


Objectively Measured Physical Activity Is Associated with Static Balance in Young Adults.

  • Wenfei Zhu‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

Regular physical activity (PA) strengthens muscles and improves balance and coordination of human body. The aim of this study was to examine whether objectively measured physical activity (PA) and sedentary behaviors were related to static balance in young men and women.


Cytokine expressions of spinal cord injury treated by neurotropin and nafamostat mesylate.

  • Chao Sun‎ et al.
  • Annals of translational medicine‎
  • 2021‎

Spinal cord injury (SCI) leads to severe physical disability and sensory dysfunction. Neurotropin (NTP) has been used clinically to alleviate neuropathic pain, while nafamostat mesylate (NM) used clinical on pancreatitis patients through inhibiting synthetic serine protease. Our previous studies showed that NTP and NM were able to repair SCI. However, the underlying mechanism has not been fully explored after treatment with these 2 different drugs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: