Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Host CDK-1 and formin mediate microvillar effacement induced by enterohemorrhagic Escherichia coli.

  • Cheng-Rung Huang‎ et al.
  • Nature communications‎
  • 2021‎

Enterohemorrhagic Escherichia coli (EHEC) induces changes to the intestinal cell cytoskeleton and formation of attaching and effacing lesions, characterized by the effacement of microvilli and then formation of actin pedestals to which the bacteria are tightly attached. Here, we use a Caenorhabditis elegans model of EHEC infection to show that microvillar effacement is mediated by a signalling pathway including mitotic cyclin-dependent kinase 1 (CDK1) and diaphanous-related formin 1 (CYK1). Similar observations are also made using EHEC-infected human intestinal cells in vitro. Our results support the use of C. elegans as a host model for studying attaching and effacing lesions in vivo, and reveal that the CDK1-formin signal axis is necessary for EHEC-induced microvillar effacement.


UvrY is required for the full virulence of Aeromonas dhakensis.

  • Yi-Wei Chen‎ et al.
  • Virulence‎
  • 2020‎

Aeromonas dhakensis is an emerging human pathogen which causes fast and severe infections worldwide. Under the gradual pressure of lacking useful antibiotics, finding a new strategy against A. dhakensis infection is urgent. To understand its pathogenesis, we created an A. dhakensis AAK1 mini-Tn10 transposon library to study the mechanism of A. dhakensis infection. By using a Caenorhabditis elegans model, we established a screening platform for the purpose of identifying attenuated mutants. The uvrY mutant, which conferred the most attenuated toxicity toward C. elegans, was identified. The uvrY mutant was also less virulent in C2C12 fibroblast and mice models, in line with in vitro results. To further elucidate the mechanism of UvrY in controlling the toxicity in A. dhakensis, we conducted a transcriptomic analysis. The RNAseq results showed that the expression of a unique hemolysin ahh1 and other virulence factors were regulated by UvrY. Complementation of Ahh1, one of the most important virulence factors, rescued the pore-formation phenotype of uvrY mutant in C. elegans; however, complementation of ahh1 endogenous promoter-driven ahh1 could not produce Ahh1 and rescue the virulence in the uvrY mutant. These findings suggest that UvrY is required for the expression of Ahh1 in A. dhakensis. Taken together, our results suggested that UvrY controls several different virulence factors and is required for the full virulence of A. dhakensis. The two-component regulator UvrY therefore a potential therapeutic target which is worthy of further study.


IGLR-2, a Leucine-Rich Repeat Domain Containing Protein, Is Required for the Host Defense in Caenorhabditis elegans.

  • Cheng-Ju Kuo‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Enterohemorrhagic Escherichia coli (EHEC), a human pathogen, also infects Caenorhabditis elegans. We demonstrated previously that C. elegans activates the p38 MAPK innate immune pathway to defend against EHEC infection. However, whether a C. elegans pattern recognition receptor (PRR) exists to regulate the immune pathway remains unknown. PRRs identified in other metazoans contain several conserved domains, including the leucine-rich repeat (LRR). By screening a focused RNAi library, we identified the IGLR-2, a transmembrane protein containing the LRR domain, as a potential immune regulator in C. elegans. Our data showed that iglr-2 regulates the host susceptibility to EHEC infection. Moreover, iglr-2 is required for pathogen avoidance to EHEC. The iglr-2 overexpressed strain, which was more resistant to EHEC originally, showed hypersusceptibility to EHEC upon knockdown of the p38 MAPK pathway. Together, our data suggested that iglr-2 plays an important role in C. elegans to defend EHEC by regulating pathogen-avoidance behavior and the p38 MAPK pathway.


Integrating high dimensional bi-directional parsing models for gene mention tagging.

  • Chun-Nan Hsu‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2008‎

Tagging gene and gene product mentions in scientific text is an important initial step of literature mining. In this article, we describe in detail our gene mention tagger participated in BioCreative 2 challenge and analyze what contributes to its good performance. Our tagger is based on the conditional random fields model (CRF), the most prevailing method for the gene mention tagging task in BioCreative 2. Our tagger is interesting because it accomplished the highest F-scores among CRF-based methods and second over all. Moreover, we obtained our results by mostly applying open source packages, making it easy to duplicate our results.


A multi-omic analysis reveals the role of fumarate in regulating the virulence of enterohemorrhagic Escherichia coli.

  • Cheng-Ju Kuo‎ et al.
  • Cell death & disease‎
  • 2018‎

The enteric pathogen enterohemorrhagic Escherichia coli (EHEC) is responsible for outbreaks of bloody diarrhea and hemolytic uremic syndrome (HUS) worldwide. Several molecular mechanisms have been described for the pathogenicity of EHEC; however, the role of bacterial metabolism in the virulence of EHEC during infection in vivo remains unclear. Here we show that aerobic metabolism plays an important role in the regulation of EHEC virulence in Caenorhabditis elegans. Our functional genomic analyses showed that disruption of the genes encoding the succinate dehydrogenase complex (Sdh) of EHEC, including the sdhA gene, attenuated its toxicity toward C. elegans animals. Sdh converts succinate to fumarate and links the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) simultaneously. Succinate accumulation and fumarate depletion in the EHEC sdhA mutant cells were also demonstrated to be concomitant by metabolomic analyses. Moreover, fumarate replenishment to the sdhA mutant significantly increased its virulence toward C. elegans. These results suggest that the TCA cycle, ETC, and alteration in metabolome all account for the attenuated toxicity of the sdhA mutant, and Sdh catabolite fumarate in particular plays a critical role in the regulation of EHEC virulence. In addition, we identified the tryptophanase (TnaA) as a downstream virulence determinant of SdhA using a label-free proteomic method. We demonstrated that expression of tnaA is regulated by fumarate in EHEC. Taken together, our multi-omic analyses demonstrate that sdhA is required for the virulence of EHEC, and aerobic metabolism plays important roles in the pathogenicity of EHEC infection in C. elegans. Moreover, our study highlights the potential targeting of SdhA, if druggable, as alternative preventive or therapeutic strategies by which to combat EHEC infection.


Mutation of the Enterohemorrhagic Escherichia coli Core LPS Biosynthesis Enzyme RfaD Confers Hypersusceptibility to Host Intestinal Innate Immunity In vivo.

  • Cheng-Ju Kuo‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2016‎

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important foodborne pathogen causing severe diseases in humans worldwide. Currently, there is no specific treatment available for EHEC infection and the use of conventional antibiotics is contraindicated. Therefore, identification of potential therapeutic targets and development of effective measures to control and treat EHEC infection are needed. Lipopolysaccharides (LPS) are surface glycolipids found on the outer membrane of gram-negative bacteria, including EHEC, and LPS biosynthesis has long been considered as potential anti-bacterial target. Here, we demonstrated that the EHEC rfaD gene that functions in the biosynthesis of the LPS inner core is required for the intestinal colonization and pathogenesis of EHEC in vivo. Disruption of the EHEC rfaD confers attenuated toxicity in Caenorhabditis elegans and less bacterial colonization in the intestine of C. elegans and mouse. Moreover, rfaD is also involved in the control of susceptibility of EHEC to antimicrobial peptides and host intestinal immunity. It is worth noting that rfaD mutation did not interfere with the growth kinetics when compared to the wild-type EHEC cells. Taken together, we demonstrated that mutations of the EHEC rfaD confer hypersusceptibility to host intestinal innate immunity in vivo, and suggested that targeting the RfaD or the core LPS synthesis pathway may provide alternative therapeutic regimens for EHEC infection.


Introducing meta-services for biomedical information extraction.

  • Florian Leitner‎ et al.
  • Genome biology‎
  • 2008‎

We introduce the first meta-service for information extraction in molecular biology, the BioCreative MetaServer (BCMS; http://bcms.bioinfo.cnio.es/). This prototype platform is a joint effort of 13 research groups and provides automatically generated annotations for PubMed/Medline abstracts. Annotation types cover gene names, gene IDs, species, and protein-protein interactions. The annotations are distributed by the meta-server in both human and machine readable formats (HTML/XML). This service is intended to be used by biomedical researchers and database annotators, and in biomedical language processing. The platform allows direct comparison, unified access, and result aggregation of the annotations.


HLH-30/TFEB-mediated autophagy functions in a cell-autonomous manner for epithelium intrinsic cellular defense against bacterial pore-forming toxin in C. elegans.

  • Huan-Da Chen‎ et al.
  • Autophagy‎
  • 2017‎

Autophagy is an evolutionarily conserved intracellular system that maintains cellular homeostasis by degrading and recycling damaged cellular components. The transcription factor HLH-30/TFEB-mediated autophagy has been reported to regulate tolerance to bacterial infection, but less is known about the bona fide bacterial effector that activates HLH-30 and autophagy. Here, we reveal that bacterial membrane pore-forming toxin (PFT) induces autophagy in an HLH-30-dependent manner in Caenorhabditis elegans. Moreover, autophagy controls the susceptibility of animals to PFT toxicity through xenophagic degradation of PFT and repair of membrane-pore cell-autonomously in the PFT-targeted intestinal cells in C. elegans. These results demonstrate that autophagic pathways and autophagy are induced partly at the transcriptional level through HLH-30 activation and are required to protect metazoan upon PFT intoxication. Together, our data show a new and powerful connection between HLH-30-mediated autophagy and epithelium intrinsic cellular defense against the single most common mode of bacterial attack in vivo.


Assessment of NER solutions against the first and second CALBC Silver Standard Corpus.

  • Dietrich Rebholz-Schuhmann‎ et al.
  • Journal of biomedical semantics‎
  • 2011‎

Competitions in text mining have been used to measure the performance of automatic text processing solutions against a manually annotated gold standard corpus (GSC). The preparation of the GSC is time-consuming and costly and the final corpus consists at the most of a few thousand documents annotated with a limited set of semantic groups. To overcome these shortcomings, the CALBC project partners (PPs) have produced a large-scale annotated biomedical corpus with four different semantic groups through the harmonisation of annotations from automatic text mining solutions, the first version of the Silver Standard Corpus (SSC-I). The four semantic groups are chemical entities and drugs (CHED), genes and proteins (PRGE), diseases and disorders (DISO) and species (SPE). This corpus has been used for the First CALBC Challenge asking the participants to annotate the corpus with their text processing solutions.


OmpR coordinates the expression of virulence factors of Enterohemorrhagic Escherichia coli in the alimentary tract of Caenorhabditis elegans.

  • Sin-Tian Wang‎ et al.
  • Molecular microbiology‎
  • 2021‎

Enterohemorrhagic Escherichia coli (EHEC), an enteropathogen that colonizes in the intestine, causes severe diarrhea and hemorrhagic colitis in humans by the expression of the type III secretion system (T3SS) and Shiga-like toxins (Stxs). However, how EHEC can sense and respond to the changes in the alimentary tract and coordinate the expression of these virulence genes remains elusive. The T3SS-related genes are known to be regulated by the locus of enterocyte effacement (LEE)-encoded regulators, such as Ler, as well as non-LEE-encoded regulators in response to different environmental cues. Herein, we report that OmpR, which participates in the adaptation of E. coli to osmolarity and pH alterations, is required for EHEC infection in Caenorhabditis elegans. OmpR protein was able to directly bind to the promoters of ler and stx1 (Shiga-like toxin 1) and regulate the expression of T3SS and Stx1, respectively, at the transcriptional level. Moreover, we demonstrated that the expression of ler in EHEC is in response to the intestinal environment and is regulated by OmpR in C. elegans. Taken together, we reveal that OmpR is an important regulator of EHEC which coordinates the expression of virulence factors during gastrointestinal infection in vivo.


The conserved regulator of autophagy and innate immunity hlh-30/TFEB mediates tolerance of enterohemorrhagic Escherichia coli in Caenorhabditis elegans.

  • Chia-En Tsai‎ et al.
  • Genetics‎
  • 2021‎

Infection with antibiotic-resistant bacteria is an emerging life-threatening issue worldwide. Enterohemorrhagic Escherichia coli O157: H7 (EHEC) causes hemorrhagic colitis and hemolytic uremic syndrome via contaminated food. Treatment of EHEC infection with antibiotics is contraindicated because of the risk of worsening the syndrome through the secreted toxins. Identifying the host factors involved in bacterial infection provides information about how to combat this pathogen. In our previous study, we showed that EHEC colonizes in the intestine of Caenorhabditis elegans. However, the host factors involved in EHEC colonization remain elusive. Thus, in this study, we aimed to identify the host factors involved in EHEC colonization. We conducted forward genetic screens to isolate mutants that enhanced EHEC colonization and named this phenotype enhanced intestinal colonization (Inc). Intriguingly, four mutants with the Inc phenotype showed significantly increased EHEC-resistant survival, which contrasts with our current knowledge. Genetic mapping and whole-genome sequencing (WGS) revealed that these mutants have loss-of-function mutations in unc-89. Furthermore, we showed that the tolerance of unc-89(wf132) to EHEC relied on HLH-30/TFEB activation. These findings suggest that hlh-30 plays a key role in pathogen tolerance in C. elegans.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: