Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 44 papers

Bretschneider solution-induced alterations in the urine metabolome in cardiac surgery patients.

  • Cheng-Chia Lee‎ et al.
  • Scientific reports‎
  • 2018‎

The development of Bretschneider's histidine-tryptophan-ketoglutarate (HTK) cardioplegia solution represented a major advancement in cardiac surgery, offering significant myocardial protection. However, metabolic changes induced by this additive in the whole body have not been systematically investigated. Using an untargeted mass spectrometry-based method to deeply explore the urine metabolome, we sought to provide a holistic and systematic view of metabolic perturbations occurred in patients receiving HTK. Prospective urine samples were collected from 100 patients who had undergone cardiac surgery, and metabolomic changes were profiled using a high-performance chemical isotope labeling liquid chromatography-mass spectrometry (LC-MS) method. A total of 14,642 peak pairs or metabolites were quantified using differential 13C-/12C-dansyl labeling LC-MS, which targets the amine/phenol submetabolome from urine specimens. We identified 223 metabolites that showed significant concentration change (fold change > 5) and assembled several potential metabolic pathway maps derived from these dysregulated metabolites. Our data indicated upregulated histidine metabolism with subsequently increased glutamine/glutamate metabolism, altered purine and pyrimidine metabolism, and enhanced vitamin B6 metabolism in patients receiving HTK. Our findings provide solid evidence that HTK solution causes significant perturbations in several metabolic pathways and establish a basis for further study of key mechanisms underlying its organ-protective or potential harmful effects.


Oncologic Outcomes in Metastatic Colorectal Cancer with Regorafenib with FOLFIRI as a Third- or Fourth-Line Setting.

  • Cheng-Jen Ma‎ et al.
  • Translational oncology‎
  • 2019‎

To evaluate the efficacy and toxicities of regorafenib plus irinotecan, dose-escalated on the basis of uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) genotyping, in previously heavily treated metastatic colorectal cancer (mCRC) and the prognostic values of EGFR expression, KRAS mutations, and tumor sidedness.


Proteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions.

  • Kuo-An Wu‎ et al.
  • Scientific reports‎
  • 2017‎

Patients with pneumonia and parapneumonic effusion (PPE) have elevated mortality and a poor prognosis. The aim of this study was to discover novel biomarkers to help distinguish between uncomplicated PPE (UPPE) and complicated PPE (CPPE). Using an iTRAQ-based quantitative proteomics, we identified 766 proteins in pleural effusions from PPE patients. In total, 45 of these proteins were quantified as upregulated proteins in CPPE. Four novel upregulated candidates (BPI, NGAL, AZU1, and calprotectin) were selected and further verified using enzyme-linked immunosorbent assays (ELISAs) on 220 patients with pleural effusions due to different causes. The pleural fluid levels of BPI, NGAL, AZU1, and calprotectin were significantly elevated in patients with CPPE. Among these four biomarkers, BPI had the best diagnostic value for CPPE, with an AUC value of 0.966, a sensitivity of 97%, and a specificity of 91.4%. A logistic regression analysis demonstrated a strong association between BPI levels > 10 ng/ml and CPPE (odds ratio = 341.3). Furthermore, the combination of pleural fluid BPI levels with LDH levels improved the sensitivity and specificity to 100% and 91.4%, respectively. Thus, our findings provided a comprehensive effusion proteome data set for PPE biomarker discovery and revealed novel biomarkers for the diagnosis of CPPE.


Epstein-Barr virus-encoded LMP1 interacts with FGD4 to activate Cdc42 and thereby promote migration of nasopharyngeal carcinoma cells.

  • Hao-Ping Liu‎ et al.
  • PLoS pathogens‎
  • 2012‎

Epstein-Barr virus (EBV) is closely associated with nasopharyngeal carcinoma (NPC), a human malignancy notorious for its highly metastatic nature. Among EBV-encoded genes, latent membrane protein 1 (LMP1) is expressed in most NPC tissues and exerts oncogenicity by engaging multiple signaling pathways in a ligand-independent manner. LMP1 expression also results in actin cytoskeleton reorganization, which modulates cell morphology and cell motility- cellular process regulated by RhoGTPases, such as Cdc42. Despite the prominent association of Cdc42 activation with tumorigenesis, the molecular basis of Cdc42 activation by LMP1 in NPC cells remains to be elucidated. Here using GST-CBD (active Cdc42-binding domain) as bait in GST pull-down assays to precipitate active Cdc42 from cell lysates, we demonstrated that LMP1 acts through its transmembrane domains to preferentially induce Cdc42 activation in various types of epithelial cells, including NPC cells. Using RNA interference combined with re-introduction experiments, we identified FGD4 (FYVE, RhoGEF and PH domain containing 4) as the GEF (guanine nucleotide exchange factor) responsible for the activation of Cdc42 by LMP1. Serial deletion experiments and co-immunoprecipitation assays further revealed that ectopically expressed FGD4 modulated LMP1-mediated Cdc42 activation by interacting with LMP1. Moreover, LMP1, through its transmembrane domains, directly bound FGD4 and enhanced FGD4 activity toward Cdc42, leading to actin cytoskeleton rearrangement and increased motility of NPC cells. Depletion of FGD4 or Cdc42 significantly reduced (∼50%) the LMP1-stimulated cell motility, an effect that was partially reversed by expression of a constitutively active mutant of Cdc42. Finally, quantitative RT-PCR and immunohistochemistry analyses showed that FGD4 and LMP1 were expressed in NPC tissues, supporting the potential physiologically relevance of this mechanism in NPC. Collectively, our results not only uncover a novel mechanism underlying LMP1-mediated Cdc42 activation, namely LMP1 interaction with FGD4, but also functionally link FGD4 to NPC tumorigenesis.


ERCC overexpression associated with a poor response of cT4b colorectal cancer with FOLFOX-based neoadjuvant concurrent chemoradiation.

  • Ming-Yii Huang‎ et al.
  • Oncology letters‎
  • 2020‎

Colorectal cancer (CRC) of the clinical tumor stage T4b (cT4b) refers to advanced tumors with direct invasion of adjacent structures and the tumors are considered unresectable. Despite advancements in aggressive surgery and combination chemotherapy, the prognosis of cT4b CRC remains poor. Optimizing the therapeutic sequence administered to patients with cT4b CRC to improve clinical outcomes is crucial. In the present study, patients with unresectable cT4b and nodal stage N1-2 CRC were investigated at a single institution. A total of 20 consecutive patients were treated with pre-operative concurrent chemoradiation by using 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX) since February 2015 and were regularly followed up until March 2020. Due to their poor response to concurrent chemoradiation (CCRT) with FOLFOX, the chemotherapy regimen was changed to irinotecan plus 5-fluorouracil/leucovorin (FOLFIRI) as the second-line neoadjuvant treatment. Genetic alterations, such as microsatellite instability (MSI), were documented, and the expression levels of excision repair cross-complementing group 1 (ERCC1) and ERCC2 were examined. Of the 20 patients, the tumors of 14 patients (70%) became resectable after FOLFIRI administration. The median duration between the last date of radiotherapy and surgery was 32.7 weeks (range, 10.1-59.3 weeks). Of note, 4 of the 14 patients with resectable tumors (28.6%) achieved a pathologic complete response. The median overall survival and progression-free survival were 27.5 months (range, 12-39 months) and 27.5 months (range, 8-39 months), respectively. The cancerous specimens of all of the patients (100%) exhibited ERCC2 overexpression and 18 specimens (90%) had ERCC1 overexpression. Only one tumor (5%) exhibited high MSI. The present study indicated that ERCC overexpression associated with the poor response of FOLFOX-based CCRT and FOLFIRI after FOLFOX-based CCRT failure may have a potential role in conversion to resectable tumors by neoadjuvant treatment in cT4b CRC. However, a further prospective study with more patients is required to improve the precision of the conclusions.


Regorafenib plus FOLFIRI with irinotecan dose escalated according to uridine diphosphate glucuronosyltransferase 1A1genotyping in previous treated metastatic colorectal cancer patients:study protocol for a randomized controlled trial.

  • Cheng-Jen Ma‎ et al.
  • Trials‎
  • 2019‎

Regorafenib is an oral multikinase inhibitor for metastatic colorectal cancer (mCRC) previously treated with fluoropyrimidines, irinotecan, oxaliplatin, monoclonal antibodies targeting vascular endothelial growth factor, and monoclonal antibodies targeting epidermal growth factor receptor. A dose reduction from 160 mg to 120 mg regorafenib reduces regorafenib-associated adverse events (AEs). Dose adjustment of irinotecan in a 5-fluorouracil/leucovorin/irinotecan (FOLFIRI) regimen on the basis of an individual uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) genotype provides optimal oncological outcomes with acceptable AEs. The aim of this study is to address the efficacy and safety of a dose-adjusted combination of regorafenib and FOLFIRI for patients with mCRC.


Anti-p53 Autoantibody Detection in Automatic Glass Capillary Immunoassay Platform for Screening of Oral Cavity Squamous Cell Carcinoma.

  • Yen-Heng Lin‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2020‎

The incidence of oral squamous cell carcinoma (OSCC), which is one of the most common cancers worldwide, has been increasing. Serum anti-p53 autoantibody is one of the most sensitive biomarkers for OSCC. Currently, the most commonly used method on clinical screening platforms is the enzyme-linked immunosorbent assay, owing to its high specificity and repeatability. However, conducting immunoassays on 96-well plates is typically time consuming, thereby limiting its clinical applications for fast diagnosis and immediate prognosis of rapidly progressive diseases. The present study performed immunoassays in glass capillaries of 1-mm internal diameter, which increases the surface to volume ratio of the reaction, to shorten the time needed for immunoassay. The immunoassay was automated while using linear motorized stages and a syringe pump. The results indicated that, when compared with the 96-well plate immunoassay, the glass capillary immunoassay decreased the reaction time from typical 120 min to 45 min, reduced the amount of reagent from typical 50 µL to 15 µL, and required only simple equipment setup. Moreover, the limit of detection for glass capillary anti-p53 autoantibody immunoassay was 0.46 ng mL-1, which is close to the 0.19 ng mL-1 value of the conventional 96-well plate assay, and the glass capillary method had a broader detection range. The apparatus was used to detect the serum anti-p53 autoantibody concentration in clinical patients and compare its results with the conventional 96-well plate method results, which suggested that both of the methods detect the same trend in the relative concentration of serum anti-p53 autoantibody in healthy individuals or patients with OSCC.


Hydroxygenkwanin Suppresses Non-Small Cell Lung Cancer Progression by Enhancing EGFR Degradation.

  • Yann-Lii Leu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Epidermal growth factor receptor (EGFR) is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC), which is the major type of lung cancer. The EGFR tyrosine kinase inhibitors (TKIs) are the approved treatment for patients harboring activating mutations in the EGFR kinase. However, most of the patients treated with EGFR-TKIs developed resistance. Therefore, the development of compounds exhibiting unique antitumor activities might help to improve the management of NSCLC patients. The total flavonoids from Daphne genkwa Sieb. et Zucc. have been shown to contain antitumor activity. Here, we have isolated a novel flavonoid hydroxygenkwanin (HGK) that displays selective cytotoxic effects on all of the NSCLC cells tested. In this study, we employed NSCLC cells harboring EGFR mutations and xenograft mouse model to examine the antitumor activity of HGK on TKI-resistant NSCLC cells. The results showed that HGK suppressed cancer cell viability both in vitro and in vivo. Whole-transcriptome analysis suggests that EGFR is a potential upstream regulator that is involved in the gene expression changes affected by HGK. In support of this analysis, we presented evidence that HGK reduced the level of EGFR and inhibited several EGFR-downstream signalings. These results suggest that the antitumor activity of HGK against TKI-resistant NSCLC cells acts by enhancing the degradation of EGFR.


Development of a salivary autoantibody biomarker panel for diagnosis of oral cavity squamous cell carcinoma.

  • Pei-Chun Hsueh‎ et al.
  • Frontiers in oncology‎
  • 2022‎

Oral cavity squamous cell carcinoma (OSCC) is a destructive disease with increasing incidence. OSCC is usually diagnosed at an advanced stage, which leads to poor outcomes of OSCC patients. Currently, there is a lack of biomarkers with sufficient effectiveness in early diagnosis of OSCC. To ameliorate OSCC screening, we evaluated the performances of salivary autoantibodies (auto-Abs) to nine proteins (ANXA2, CA2, ISG15, KNG1, MMP1, MMP3, PRDX2, SPARC, and HSPA5) as OSCC biomarkers. A multiplexed immunoassay using a fluorescence bead-based suspension array system was established for simultaneous assessment of the salivary levels of the above nine auto-Abs and a known OSCC-associated auto-Ab, anti-p53. Compared to healthy individuals (n = 140), the salivary levels of nine auto-Abs were significantly elevated in OSCC patients (n = 160). Notably, the salivary levels of the 10 auto-Abs in the early-stage OSCC patients (n = 102) were higher than that in the healthy group. Most importantly, utilizing a marker panel consisting of anti-MMP3, anti-PRDX2, anti-SPARC, and anti-HSPA5 for detection of early-stage OSCC achieved a sensitivity of 63.8% with a specificity of 90%. Collectively, herein we established a multiplex auto-Ab platform for OSCC screening, and demonstrated a four-auto-Ab panel which shows clinical applicability for early diagnosis of OSCC.


Impaired inflammasome activation and bacterial clearance in G6PD deficiency due to defective NOX/p38 MAPK/AP-1 redox signaling.

  • Wei-Chen Yen‎ et al.
  • Redox biology‎
  • 2020‎

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway that modulates cellular redox homeostasis via the regeneration of NADPH. G6PD-deficient cells have a reduced ability to induce the innate immune response, thus increasing host susceptibility to pathogen infections. An important part of the immune response is the activation of the inflammasome. G6PD-deficient peripheral blood mononuclear cells (PBMCs) from patients and human monocytic (THP-1) cells were used as models to investigate whether G6PD modulates inflammasome activation. A decreased expression of IL-1β was observed in both G6PD-deficient PBMCs and PMA-primed G6PD-knockdown (G6PD-kd) THP-1 cells upon lipopolysaccharide (LPS)/adenosine triphosphate (ATP) or LPS/nigericin stimulation. The pro-IL-1β expression of THP-1 cells was decreased by G6PD knockdown at the transcriptional and translational levels in an investigation of the expression of the inflammasome subunits. The phosphorylation of p38 MAPK and downstream c-Fos expression were decreased upon G6PD knockdown, accompanied by decreased AP-1 translocation into the nucleus. Impaired inflammasome activation in G6PD-kd THP-1 cells was mediated by a decrease in the production of reactive oxygen species (ROS) by NOX signaling, while treatment with hydrogen peroxide (H2O2) enhanced inflammasome activation in G6PD-kd THP-1 cells. G6PD knockdown decreased Staphylococcus aureus and Escherichia coli clearance in G6PD-kd THP-1 cells and G6PD-deficient PBMCs following inflammasome activation. These findings support the notion that enhanced pathogen susceptibility in G6PD deficiency is, in part, due to an altered redox signaling, which adversely affects inflammasome activation and the bactericidal response.


Modular scaffolding by lncRNA HOXA10-AS promotes oral cancer progression.

  • Yi-Tung Chen‎ et al.
  • Cell death & disease‎
  • 2022‎

Recent findings have implicated long noncoding RNAs (lncRNAs) as pivotal gene regulators for diverse biological processes, despite their lack of protein-coding capabilities. Accumulating evidence suggests the significance of lncRNAs in mediating cell signaling pathways, especially those associated with tumorigenesis. Consequently, lncRNAs have emerged as novel functional regulators and indicators of cancer development and malignancy. Recent transcriptomic profiling has recognized a tumor-biased expressed lncRNA, the HOXA10-AS transcript, whose expression is associated with patient survival. Functional cell-based assays show that the HOXA10-AS transcript is essential in the regulation of oral cancer growth and metastasis. LncRNA expression is also associated with drug sensitivity. In this study, we identify that HOXA10-AS serves as a modular scaffold for TP63 mRNA processing and that such involvement regulates cancer growth. These findings provide a functional interpretation of lncRNA-mediated molecular regulation, highlighting the significance of the lncRNA transcriptome in cancer biology.


Feasibility of robot-assisted surgery in elderly patients with rectal cancer.

  • Wei-Chih Su‎ et al.
  • Journal of minimal access surgery‎
  • 2021‎

Although surgical resection is the main treatment for rectal cancer, the optimal surgical protocol for elderly patients with rectal cancer remains controversial. This study evaluated the feasibility of robot-assisted surgery in elderly patients with rectal cancer.


Multiplexed quantification of 63 proteins in human urine by multiple reaction monitoring-based mass spectrometry for discovery of potential bladder cancer biomarkers.

  • Yi-Ting Chen‎ et al.
  • Journal of proteomics‎
  • 2012‎

Three common urological diseases are bladder cancer, urinary tract infection, and hematuria. Seventeen bladder cancer biomarkers were previously discovered using iTRAQ - these findings were verified by MRM-MS in this current study. Urine samples from 156 patients with hernia (n=57, control), bladder cancer (n=76), or urinary tract infection/hematuria (n=23) were collected and subjected to multiplexed LC-MRM/MS to determine the concentrations of 63 proteins that are normally considered to be plasma proteins, but which include proteins found in our earlier iTRAQ study. Sixty-five stable isotope-labeled standard proteotypic peptides were used as internal standards for 63 targeted proteins. Twelve proteins showed higher concentrations in the bladder cancer group than in the hernia and the urinary tract infection/hematuria groups, and thus represent potential urinary biomarkers for detection of bladder cancer. Prothrombin had the highest AUC (0.796), with 71.1% sensitivity and 75.0% specificity for differentiating bladder cancer (n=76) from non-cancerous (n=80) patients. The multiplexed MRM-MS data was used to generate a six-peptide marker panel. This six-peptide panel (afamin, adiponectin, complement C4 gamma chain, apolipoprotein A-II precursor, ceruloplasmin, and prothrombin) can discriminate bladder cancer subjects from non-cancerous subjects with an AUC of 0.814, with a 76.3% positive predictive value, and a 77.5% negative predictive value. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.


58-kDa microspherule protein (MSP58) is novel Brahma-related gene 1 (BRG1)-associated protein that modulates p53/p21 senescence pathway.

  • Che-Chia Hsu‎ et al.
  • The Journal of biological chemistry‎
  • 2012‎

The nucleolar 58-kDa microspherule protein (MSP58) protein is a candidate oncogene implicated in modulating cellular proliferation and malignant transformation. In this study, we show that knocking down MSP58 expression caused aneuploidy and led to apoptosis, whereas ectopic expression of MSP58 regulated cell proliferation in a context-dependent manner. Specifically, ectopic expression of MSP58 in normal human IMR90 and Hs68 diploid fibroblasts, the H184B5F5/M10 mammary epithelial cell line, HT1080 fibrosarcoma cells, primary mouse embryonic fibroblasts, and immortalized NIH3T3 fibroblasts resulted in induction of premature senescence, an enlarged and flattened cellular morphology, and increased senescence-associated β-galactosidase activity. MSP58-driven senescence was strictly dependent on the presence of functional p53 as revealed by the fact that normal cells with p53 knockdown by specific shRNA or cells with a mutated or functionally impaired p53 pathway were effective in bypassing MSP58-induced senescence. At least two senescence mechanisms are induced by MSP58. First, MSP58 activates the DNA damage response and p53/p21 signaling pathways. Second, MSP58, p53, and the SWI/SNF chromatin-remodeling subunit Brahma-related gene 1 (BRG1) form a ternary complex on the p21 promoter and collaborate to activate p21. Additionally, MSP58 protein levels increased in cells undergoing replicative senescence and stress-induced senescence. Notably, the results of analyzing expression levels of MSP58 between tumors and matched normal tissues showed significant changes (both up- and down-regulation) in its expression in various types of tumors. Our findings highlight new aspects of MSP58 in modulating cellular senescence and suggest that MSP58 has both oncogenic and tumor-suppressive properties.


Cotargeting CHK1 and PI3K Synergistically Suppresses Tumor Growth of Oral Cavity Squamous Cell Carcinoma in Patient-Derived Xenografts.

  • Chia-Yu Yang‎ et al.
  • Cancers‎
  • 2020‎

Oral cavity squamous cell carcinomas (OSCCs) are aggressive tumors, and their recurrence leads to poor prognosis and reduced survival rates. This study aimed to identify therapeutic targets and to evaluate the efficacy of targeted inhibitors in OSCC patient-derived xenograft (PDX) models. Herein, we reported that OSCC PDXs recapitulated the genomic signatures of their paired primary tumors and the expression of CHEK1, PIK3CA, and PIK3CD was significantly upregulated in OSCC. The antitumor efficacy of CHK1 inhibitors (PF477736, AZD7762, LY2606368) and PI3K inhibitors (BYL719, GDC0941, GSK1059615) was investigated in OSCC cell lines and PDX models. Targeting either CHK1 or PI3K effectively inhibited cell proliferation and colony formation by inducing cell cycle arrest and apoptosis in in vitro cell-based assays. Cisplatin-based chemotherapy combined with CHK1 inhibitor treatment synergistically inhibited cell proliferation by suppressing CHK1 phosphorylation and inducing PARP cleavage. Furthermore, compared with monotherapy, cotreatment with CHK1 and PI3K inhibitors exerted synergistic anticancer effects by suppressing CHK1, AKT, and 4E-BP1 phosphorylation. In summary, our study identified CHK1 and PI3K as promising targets, especially in a dual treatment strategy combining a CHK1 inhibitor with cisplatin or a PI3K inhibitor as a novel therapeutic approach for OSCC patients with aberrant cell cycle regulation and PI3K signaling activation.


Endoplasmic reticulum aminopeptidase 2 involvement in metastasis of oral cavity squamous cell carcinoma discovered by proteome profiling of primary cancer cells.

  • I-Chun Kuo‎ et al.
  • Oncotarget‎
  • 2017‎

Oral cavity squamous cell carcinoma (OSCC) is a leading cause of cancer-related deaths worldwide and associated with poor prognosis and mortality. Discovery of proteins that can improve OSCC treatment is needed. Using comparative proteome profiling of primary cells derived from OSCC and adjacent noncancerous epithelium, endoplasmic reticulum aminopeptidases 2 (ERAP2) has been identified as an OSCC-associated protein. Compared with the adjacent normal tissues, ERAP2 levels were determined to be significantly elevated in OSCC tissues using quantitative real-time PCR and immunohistochemistry. Importantly, overexpression of ERAP2 was associated with positive N stage, advanced overall stage, positive perineural invasion, and tumor depth (P = 0.041, 0.015, 0.010, and 0.032, respectively). The overall survival rates of patients without and with the ERAP2 overexpression were 71.9% and 56.0%, respectively (P = 0.029). Furthermore, knockdown of ERAP2 inhibited the migration and invasion abilities of OSCC cells. Our results collectively show that ERAP2 overexpression is associated with the cervical metastasis and poorer prognosis of OSCC.


First-decade patient with colorectal cancer carrying both germline and somatic mutations in APC gene.

  • Yung-Sung Yeh‎ et al.
  • BMC cancer‎
  • 2017‎

Colorectal carcinoma (CRC) is one of the most common causes of cancer-related deaths. The mean age of patients with CRC ranges from 49 to 60 years. Pediatric CRC is unusual, which often escapes early diagnosis because of a lack of awareness of its occurrence in children. The association between the mutation of APC and the occurrence of CRC in the first decade of life remains unknown.


Integrated Omics Analysis of Non-Small-Cell Lung Cancer Cells Harboring the EGFR C797S Mutation Reveals the Potential of AXL as a Novel Therapeutic Target in TKI-Resistant Lung Cancer.

  • Tong-Hong Wang‎ et al.
  • Cancers‎
  • 2020‎

Oncogenic mutations of epidermal growth factor receptor (EGFR) are responsive to targeted tyrosine kinase inhibitor (TKI) treatment in non-small-cell lung cancer (NSCLC). However, NSCLC patients harboring activating EGFR mutations inevitably develop resistance to TKIs. The acquired EGFR C797S mutation is a known mechanism that confers resistance to third-generation EGFR TKIs such as AZD9291. In this work, we employed CRISPR/Cas9 genome-editing technology to knock-in the EGFR C797S mutation into an NSCLC cell line harboring EGFR L858R/T790M. The established cell model was used to investigate the biology and treatment strategy of acquired EGFR C797S mutations. Transcriptome and proteome analyses revealed that the differentially expressed genes/proteins in the cells harboring the EGFR C797S mutation are associated with a mesenchymal-like cell state with elevated expression of AXL receptor tyrosine kinase. Furthermore, we presented evidence that inhibition of AXL is effective in slowing the growth of NSCLC cells harboring EGFR C797S. Our findings suggest that AXL inhibition could be a second-line or a potential adjuvant treatment for NSCLC harboring the EGFR C797S mutation.


Reducing Lung ATP Levels and Alleviating Asthmatic Airway Inflammation through Adeno-Associated Viral Vector-Mediated CD39 Expression.

  • Yung-An Huang‎ et al.
  • Biomedicines‎
  • 2021‎

Asthma is a chronic respiratory inflammatory disease. Patients usually suffer long-term symptoms and high medical expenses. Extracellular ATP (eATP) has been identified as a danger signal in innate immunity and serves as a potent inflammatory mediator for asthma. Hydrolyzing eATP in lungs might be a potential approach to alleviate asthmatic inflammation. Recombinant adeno-associated virus (rAAV) vectors that contain tissue-specific cap protein have been demonstrated to efficiently transfer exogenous genes into the lung tissues. To test anti-inflammation efficacy of rAAV-mediated CD39 gene transfer, rAAV-CD39 was generated and applied to OVA-mediated asthmatic mice. BALB/c mice were sensitized intraperitoneally and challenged intratracheally with OVA and treated with rAAV-CD39. At the end of procedure, some inflammatory features were examined. rAAV-CD39 treatment downregulated the levels of pulmonary eATP by the rescued expression of CD39. Several asthmatic features, such as airway hyperresponsiveness, eosinophilia, mucin deposition, and IL-5/IL-13 production in the lungs were decreased in the rAAV-CD39-treated mice. Reduced IL-5/IL-13 production and increased frequency of CD4+FoxP3+ regulatory T cells were detected in draining lymph nodes of rAAV-CD39 treated mice. This evidence suggested that rAAV-mediated CD39 gene transfer attenuated the asthmatic airway inflammation locally. The results suggest that rAAV-CD39 might have therapeutic potential for asthma.


EGFR expression in patients with stage III colorectal cancer after adjuvant chemotherapy and on cancer cell function.

  • Ching-Wen Huang‎ et al.
  • Oncotarget‎
  • 2017‎

The epidermal growth factor receptor (EGFR)/RAS/RAF/MEK/MAPK pathway plays a crucial role in the carcinogenesis, invasion and metastasis of colorectal cancer (CRC). However, its role in the prognosis and prediction of relapse in patients with stage III CRC after adjuvant chemotherapy remains controversial. In the present study, the clinicopathological features of 173 patients with stage III CRC who underwent radical resection and adjuvant chemotherapy with the fluoropyrimidine/folinic acid, and oxaliplatin (FOLFOX) regimen, and their prognostic values of EGFR expression were retrospectively analyzed. By conducting an in vitro CRC cell line study through the knockdown of EGFR expression, we analyzed cell proliferation, colony formation and migration. Positive EGFR expression and an abnormal postoperative serum carcinoembryonic antigen (CEA) level were found to be significant independent negative predictive factors for postoperative relapse. Furthermore, positive EGFR expression was a significant independent negative prognostic factor for disease-free survival (DFS) and overall survival (OS). Additionally, an in vitro cell line study showed that the knockdown of EGFR expression significantly reduced CRC cell proliferation, colony formation and migration. The results of in vitro and in vivo experiments demonstrated that EGFR expression had a prognostic value for OS and DFS, as well as predictive roles for postoperative relapse, in patients with stage III CRC. By analyzing both EGFR expression and the postoperative CEA, the patients with stage III CRC who were at a high risk of postoperative relapse, or mortality following adjuvant chemotherapy could be identified. In short, CRC cells with EGFR expression would exhibit a highly malignant behavior.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: