Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,281 papers

Calcitriol inhibits tumor necrosis factor alpha and macrophage inflammatory protein-2 during lipopolysaccharide-induced acute lung injury in mice.

  • Zhu-Xia Tan‎ et al.
  • Steroids‎
  • 2016‎

Acute lung injury is a common complication of sepsis in intensive care unit patients with an extremely high mortality. The present study investigated the effects of calcitriol, the active form of vitamin D, on tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2) in sepsis-induced acute lung injury. Mice were intraperitoneally (i.p.) injected with lipopolysaccharide (LPS, 1.0mg/kg) to establish the animal model of sepsis-induced acute lung injury. Some mice were i.p. injected with calcitriol (1.0μg/kg) before LPS injection. An obvious infiltration of inflammatory cells in the lungs was observed beginning at 1h after LPS injection. Correspondingly, TNF-α and MIP-2 in sera and lung homogenates were markedly elevated in LPS-treated mice. Interestingly, calcitriol obviously alleviated LPS-induced infiltration of inflammatory cells in the lungs. Moreover, calcitriol markedly attenuated LPS-induced elevation of TNF-α and MIP-2 in sera and lung homogenates. Further analysis showed that calcitriol repressed LPS-induced p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) phosphorylation. In addition, calcitriol blocked LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 and p50 subunit in the lungs. Taken together, these results suggest that calcitriol inhibits inflammatory cytokines production in LPS-induced acute lung injury.


Overexpression of complement component C5a accelerates the development of atherosclerosis in ApoE-knockout mice.

  • Guipeng An‎ et al.
  • Oncotarget‎
  • 2016‎

In this study, we investigated the direct effect of C5a overexpression on atherosclerosis.


Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

  • Mengsha Tong‎ et al.
  • Oncotarget‎
  • 2015‎

Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.


Epigenetic Upregulation of Metallothionein 2A by Diallyl Trisulfide Enhances Chemosensitivity of Human Gastric Cancer Cells to Docetaxel Through Attenuating NF-κB Activation.

  • Yuanming Pan‎ et al.
  • Antioxidants & redox signaling‎
  • 2016‎

Metallothionein 2A (MT2A) and nuclear factor-kappaB (NF-κB) are both involved in carcinogenesis and cancer chemosensitivity. We previously showed decreased expression of MT2A and IκB-α in human gastric cancer (GC) associated with poor prognosis of GC patients. The present study investigated the effect of diallyl trisulfide (DATS), a garlic-derived compound, and docetaxel (DOC) on regulation of MT2A in relation to NF-κB in GC cells.


Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes.

  • Kai Kai Li‎ et al.
  • Scientific reports‎
  • 2016‎

Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea.


A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria.

  • Ji Geng‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Despite advances in treatment, malignant glioma commonly exhibits recurrence, subsequently leading to a poor prognosis. As manganese (Mn) compounds can be transported by the transferrin‑transferrin receptor system, the present study synthesized and examined the potential use of Adpa‑Mn as a novel antitumor agent. Adpa‑Mn time and dose‑dependently inhibited U251 and C6 cell proliferation; however, it had little effect on normal astrocytes. Apoptosis was significantly elevated following treatment with Adpa‑Mn, as detected by chromatin condensation, Annexin V/propidium iodide staining, cytochrome c release from mitochondria to the cytoplasm, and the activation of caspases‑9, ‑7 and ‑3 and poly (ADP‑ribose) polymerase. In addition, Adpa‑Mn enhanced fluorescence intensity of monodansylcadaverine and elevated the expression levels of the autophagy‑related protein microtubule‑associated protein 1 light chain 3. Pretreatment with the autophagy inhibitors 3‑methyladenine and chloroquine enhanced Adpa‑Mn‑induced cell inhibition, thus indicating that autophagy has an essential role in this process. Furthermore, evidence of mitochondrial dysfunction was detected in the Adpa‑Mn‑treated group, including disrupted membrane potential, elevated levels of reactive oxygen species (ROS) and depleted adenosine triphosphate. Conversely, treatment with the mitochondrial permeability transition inhibitor cyclosporin A reversed Adpa‑Mn‑induced ROS production, mitochondrial damage and cell apoptosis, thus suggesting that Adpa‑Mn may target the mitochondria. Taken together, these data suggested that Adpa‑Mn may be considered for use as a novel anti‑glioma therapeutic option.


Automated vision system for fabric defect inspection using Gabor filters and PCNN.

  • Yundong Li‎ et al.
  • SpringerPlus‎
  • 2016‎

In this study, an embedded machine vision system using Gabor filters and Pulse Coupled Neural Network (PCNN) is developed to identify defects of warp-knitted fabrics automatically. The system consists of smart cameras and a Human Machine Interface (HMI) controller. A hybrid detection algorithm combing Gabor filters and PCNN is running on the SOC processor of the smart camera. First, Gabor filters are employed to enhance the contrast of images captured by a CMOS sensor. Second, defect areas are segmented by PCNN with adaptive parameter setting. Third, smart cameras will notice the controller to stop the warp-knitting machine once defects are found out. Experimental results demonstrate that the hybrid method is superior to Gabor and wavelet methods on detection accuracy. Actual operations in a textile factory verify the effectiveness of the inspection system.


Identification of MicroRNAs Involved in Growth Arrest and Apoptosis in Hydrogen Peroxide-Treated Human Hepatocellular Carcinoma Cell Line HepG2.

  • Yuan Luo‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2016‎

Although both oxidative stress and microRNAs (miRNAs) play vital roles in physiological and pathological processes, little is known about the interactions between them. In this study, we first described the regulation of H2O2 in cell viability, proliferation, cycle, and apoptosis of human hepatocellular carcinoma cell line HepG2. Then, miRNAs expression was profiled after H2O2 treatment. The results showed that high concentration of H2O2 (600 μM) could decrease cell viability, inhibit cell proliferation, induce cell cycle arrest, and finally promote cell apoptosis. Conversely, no significant effects could be found under treatment with low concentration (30 μM). miRNAs array analysis identified 131 differentially expressed miRNAs (125 were upregulated and 6 were downregulated) and predicted 13504 putative target genes of the deregulated miRNAs. Gene ontology (GO) analysis revealed that the putative target genes were associated with H2O2-induced cell growth arrest and apoptosis. The subsequent bioinformatics analysis indicated that H2O2-response pathways, including MAPK signaling pathway, apoptosis, and pathways in cancer and cell cycle, were significantly affected. Overall, these results provided comprehensive information on the biological function of H2O2 treatment in HepG2 cells. The identification of miRNAs and their putative targets may offer new diagnostic and therapeutic strategies for liver cancer.


Living near a Major Road in Beijing: Association with Lower Lung Function, Airway Acidification, and Chronic Cough.

  • Zhan-Wei Hu‎ et al.
  • Chinese medical journal‎
  • 2016‎

The effects of near-road pollution on lung function in China have not been well studied. We aimed to investigate the effects of long-term exposure to traffic-related air pollution on lung function, airway inflammation, and respiratory symptoms.


IRE1α inhibition by natural compound genipin on tumour associated macrophages reduces growth of hepatocellular carcinoma.

  • Hor-Yue Tan‎ et al.
  • Oncotarget‎
  • 2016‎

Accumulating evidences postulated the influential roles of macrophages in mediating hepatocellular carcinoma (HCC) initiation and progression. In this study, we demonstrate that a small molecule, genipin reduced HCC growth through suppressing IRE1α-mediated infiltration and priming of tumour associated macrophages (TAMs). Oral administration of genipin (30mg/kg/2days) suppressed orthotopic HCC tumour growth without challenging the viability and proliferation of HCC cells. Genipin reduced infiltration of inflammatory monocytes into liver and tumour thereby suppressed TAMs presence in HCC microenvironment. Suppression of HCC growth was diminished in HCC-implanted mice with depletion of TAMs by liposome clodronate. Genipin inhibited the TAMs migration, and reduced expression of TAMs-derived inflammatory cytokines that favors HCC proliferation. This is revealed by the in vivo deletion of IRE1α on TAMs in genipin-treated HCC-implanted mice. Diminishing IRE1α neutralised the inhibitory effect of genipin on TAMs. Silencing the expression of IRE1α greatly reduced TAMs migration and expression of inflammatory cytokines that prime HCC proliferation. Suppression of IRE1α led to reduced XBP-1 splicing and NF-κB activation. The reduced association of IRE1α with TRAF2 and IKK complex may be responsible for the genipin-mediated inactivation of NF-κB. The findings show the important role of TAMs in inhibitory effect of genipin on HCC, and TAMs-expressing IRE1α as a promising target for disrupting the tumour environment that favor of HCC development.


MiR-193a-3p promotes the multi-chemoresistance of bladder cancer by targeting the HOXC9 gene.

  • Lei Lv‎ et al.
  • Cancer letters‎
  • 2015‎

Chemoresistance prevents the curative cancer chemotherapy and presents a formidable challenge for both cancer researchers and clinicians. We have previously shown that miR-193a-3p promotes the multi-chemoresistance of bladder cancer cells via repressing its three target genes: SRSF2, PLAU and HIC2. Here, we showed that as a new direct target, the homeobox C9 (HOXC9) gene also executes the promoting effect of miR-193a-3p on the bladder cancer chemoresistance from a systematic study of multi-chemosensitive (5637) and resistant (H-bc) bladder cancer cell lines in both cell culture and tumor-xenograft/nude mice system. Paralleled with the changes in the drug-triggered cell death, the activities of both DNA damage response and oxidative stress pathways were drastically altered by a forced reversal of miR-193a-3p or HOXC9 levels in bladder cancer cells. In addition to a new mechanistic insight, our results provide a set of the essential genes in the miR-193a-3p/HOXC9/DNA damage response/oxidative stress pathway axis as the diagnostic targets for the guided anti-bladder cancer chemotherapy.


The effect of gonadotropin on glucose transport and apoptosis in rat ovary.

  • Cheng Zhang‎ et al.
  • PloS one‎
  • 2012‎

Although the effects of Gonadotropin on ovarian physiology have been known for many decades, its action on glucose uptake in the rat ovary remained poorly understood. Evidence also suggests that glucose uptake is mediated by a number of glucose transporter proteins (Glut). Therefore, we examined the rat ovary for the presence of Glut1-4 and blood glucose level after eCG (equine chorionic gonadotropin) and anti-eCG antiserum treatment. All of the glucose transports were present in the ovarian oocyte, granulosa cells and theca cells in different stage follicles. The expression of Glut in ovary was up-regulated by eCG, however, anti-eCG antiserum reversed eCG action. Western blot analysis also demonstrated the content of Glut1 was higher in eCG treatment group compared with anti-eCG antiserum and control group. The same tendency was shown in other glut isoforms. Moreover, there were no significant difference between the anti-eCG antiserum and control group. In additional, the level of serum glucose in eCG treatment group was significantly higher than others, which is similar with glut expression pattern. High glucose level in blood is correlated with increased expression of glucose transporter proteins in rat ovary. Meanwhile, anti-eCG antiserum increased granulosa cell apoptosis in antral follicle compared with those in eCG group. Our observations provide potential explanation for the effects of Glut on follicular development in rat ovary and a role for eCG in the regulation of ovarian glucose uptake.


Adenovirus-mediated co-expression of the TRAIL and HN genes inhibits growth and induces apoptosis in Marek's disease tumor cell line MSB-1.

  • Dongxiao Dong‎ et al.
  • Cancer cell international‎
  • 2015‎

The objective of this study was to determine the in vitro tumor-inhibitory effect of a recombinant adenovirus expressing a fusion protein of tumor necrosis factor (TNF) related apoptosis inducing ligand (TRAIL) and hemagglutinin-neuraminidase (HN) genes on the MSB-1 Marek's disease tumor cell line.


Vitamin D3 inhibits lipopolysaccharide-induced placental inflammation through reinforcing interaction between vitamin D receptor and nuclear factor kappa B p65 subunit.

  • Yuan-Hua Chen‎ et al.
  • Scientific reports‎
  • 2015‎

It is increasingly recognized that vitamin D3 (VitD3) has an anti-inflammatory activity. The present study investigated the effects of maternal VitD3 supplementation during pregnancy on LPS-induced placental inflammation and fetal intrauterine growth restriction (IUGR). All pregnant mice except controls were intraperitoneally injected with LPS (100 μg/kg) daily from gestational day (GD)15-17. In VitD3 + LPS group, pregnant mice were orally administered with VitD3 (25 μg/kg) before LPS injection. As expected, maternal LPS exposure caused placental inflammation and fetal IUGR. Interestingly, pretreatment with VitD3 repressed placental inflammation and protected against LPS-induced fetal IUGR. Further analysis showed that pretreatment with VitD3, which activated placental vitamin D receptor (VDR) signaling, specifically suppressed LPS-induced activation of nuclear factor kappa B (NF-κB) and significantly blocked nuclear translocation of NF-κB p65 subunit in trophoblast gaint cells of the labyrinth layer. Conversely, LPS, which activated placental NF-κB signaling, suppressed placental VDR activation and its target gene expression. Moreover, VitD3 reinforced physical interaction between placental VDR and NF-κB p65 subunit. The further study demonstrates that VitD3 inhibits placental NF-κB signaling in VDR-dependent manner. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity. Overall, the present study provides evidence for roles of VDR as a key regulator of placental inflammation.


Targeting blood thrombogenicity precipitates atherothrombotic events in a mouse model of plaque destabilization.

  • Xiaoling Liu‎ et al.
  • Scientific reports‎
  • 2015‎

Although some features of plaque instability can be observed in genetically modified mouse models, atherothrombosis induction in mice has been attested to be difficult. We sought to test the hypothesis that alterations in blood thrombogenicity might have an essential role in the development of atherothrombosis in ApoE-/- mice. In a mouse model of plaque destabilization established in our laboratory, we targeted blood thrombogenicity by systemically overexpressing murine prothrombin via adenovirus-mediated gene transfer. Systemic overexpression of prothrombin increased blood thrombogenicity, and remarkably, precipitated atherothrombotic events in 70% of the animals. The affected plaques displayed features of culprit lesions as seen in human coronary arteries, including fibrous cap disruption, luminal thrombosis, and plaque hemorrhage. Treatment with aspirin and clopidogrel substantially reduced the incidence of atherothrombosis in this model. Mechanistically, increased inflammation, apoptosis and upregulation of metalloproteinases contributed to the development of plaque destabilization and atherothrombosis. As conclusions, targeting blood thrombogenicity in mice can faithfully reproduce the process of atherothrombosis as occurring in human coronary vessels. Our results suggest that blood-plaque interactions are critical in the development of atherothrombosis in mice, substantiating the argument that changes in blood coagulation status may have a determinant role in the onset of acute coronary syndrome.


Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer.

  • Yan Zhu‎ et al.
  • Scientific reports‎
  • 2015‎

The patient-derived tumor xenograft (PDTX) model has become the most realistic model for preclinical studies. PDTX models of gastric cancer using surgical tissues are reported occasionally; however, the PDTX models using gastroscopic biopsies, which are best for evaluating new drugs, are unreported. In our study, a total of 185 fresh gastroscopic biopsies of gastric cancer were subcutaneously transplanted into NOD/SCID (Nonobese Diabetic/Severe Combined Immunodeficiency) mice. Sixty-three PDTX models were successfully established (34.1%, 63/185) and passaged to maintain tumors in vivo, and the mean latency period of xenografts was 65.86 ± 32.84 days (11-160 days). Biopsies of prior chemotherapy had a higher transplantation rate (52.1%, 37/71) than biopsies after chemotherapy (21.9%, 25/114; P = 0.000). No differences were found between the latency period of xenografts and characteristics of patients. The pathological and molecular features of PDTX as well as chemosensitivity were highly consistent with those of primary tumors of patients. The genetic characteristics were stable during passaging of PDTX models. In summary PDTX models using gastroscopic biopsies in gastric cancer were demonstrated for the first time, and the biological characteristics of the PDTX models were highly consistent with patients, which provided the best preclinical study platform for gastric cancer.


MicroRNAs-mediated cell fate in triple negative breast cancers.

  • Xinbing Sui‎ et al.
  • Cancer letters‎
  • 2015‎

MicroRNAs (miRNAs) are small non-coding RNAs that function as major modulators of posttranscriptional protein-coding gene expression in diverse biological processes including cell survival, cell cycle arrest, senescence, autophagy, and differentiation. The control of miRNAs plays an important role in cancer initiation and metastasis. Triple negative breast cancer (TNBC) is a distinct breast cancer subtype, which is defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu). Due to its high recurrence rate and poor prognosis, TNBC represents a challenge for breast cancer therapy. In recent years, a large number of microRNAs have been identified to play a crucial role in TNBC and some of them were found to be correlated with worse prognosis of TNBC. Thus, understanding the novel function of miRNAs may allow us to develop promising therapeutic targets for the treatment of TNBC patients.


Novel long non-coding RNA LINC02532 promotes gastric cancer cell proliferation, migration, and invasion in vitro.

  • Cheng Zhang‎ et al.
  • World journal of gastrointestinal oncology‎
  • 2019‎

Long non-coding RNAs (lncRNAs) are a kind of single-stranded RNA of more than 200 nucleotides in length and have no protein-coding function. Amounting studies have indicated that lncRNAs could play a vital role in the initiation and development of cancers, including gastric cancer (GC). Considering the crucial functions of lncRNAs, the identification and exploration of novel lncRNAs in GC is necessary.


Identification and characterization of genes with absolute mRNA abundances changes in tumor cells with varied transcriptome sizes.

  • Hao Cai‎ et al.
  • BMC genomics‎
  • 2019‎

The amount of RNA per cell, namely the transcriptome size, may vary under many biological conditions including tumor. If the transcriptome size of two cells is different, direct comparison of the expression measurements on the same amount of total RNA for two samples can only identify genes with changes in the relative mRNA abundances, i.e., cellular mRNA concentration, rather than genes with changes in the absolute mRNA abundances.


Circulating serum vitamin D levels and total body bone mineral density: A Mendelian randomization study.

  • Jing-Yi Sun‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Until recently, randomized controlled trials have not demonstrated convincing evidence that vitamin D, or vitamin D in combination with calcium supplementation could improve bone mineral density (BMD), osteoporosis and fracture. It remains unclear whether vitamin D levels are causally associated with total body BMD. Here, we performed a Mendelian randomization study to investigate the association of vitamin D levels with total body BMD using a large-scale vitamin D genome-wide association study (GWAS) dataset (including 79 366 individuals) and a large-scale total body BMD GWAS dataset (including 66,628 individuals). We selected three Mendelian randomization methods including inverse-variance weighted meta-analysis (IVW), weighted median regression and MR-Egger regression. All these three methods did not show statistically significant association of genetically increased vitamin D levels with total body BMD. Importantly, our findings are consistent with recent randomized clinical trials and Mendelian randomization study. In summary, we provide genetic evidence that increased vitamin D levels could not improve BMD in the general population. Hence, vitamin D supplementation alone may not be associated with reduced fracture incidence among community-dwelling adults without known vitamin D deficiency, osteoporosis, or prior fracture.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: