Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Improving the blast resistance of the elite rice variety Kongyu-131 by updating the pi21 locus.

  • Xiaomin Feng‎ et al.
  • BMC plant biology‎
  • 2019‎

As an elite japonica rice variety, Kongyu-131 has been cultivated for over 20 years in the third accumulated temperature zone of Heilongjiang Province, China. However, the cultivated area of Kongyu-131 has decreased each year due to extensive outbreaks of rice blast. To achieve the goals of improving blast resistance and preserving other desirable traits in Kongyu-131, a genome-updating method similar to repairing a bug in a computer program was adopted in this study. A new allele of the broad-spectrum blast resistance gene pi21 in the upland rice variety GKGH was mined by genetic analysis and introgressed into the genome of Kongyu-131 to upgrade its blast resistance.


Genome-wide identification and characterization of gibberellin metabolic and signal transduction (GA MST) pathway mediating seed and berry development (SBD) in grape (Vitis vinifera L.).

  • Wenran Wang‎ et al.
  • BMC plant biology‎
  • 2020‎

Grape is highly sensitive to gibberellin (GA), which is crucial during seed and berry development (SBD) either by itself or by interacting with other hormones, such as auxin, Abscisic acid (ABA), and Cytokinin (CK). However, no systematic analysis of GA metabolic and signal transduction (MST) pathway has been undertaken in grapevine.


Identification of effector CEP112 that promotes the infection of necrotrophic Alternaria solani.

  • Chen Wang‎ et al.
  • BMC plant biology‎
  • 2022‎

Alternaria solani is a typical necrotrophic pathogen that can cause severe early blight on Solanaceae crops and cause ring disease on plant leaves. Phytopathogens produce secretory effectors that regulate the host immune response and promote pathogenic infection. Effector proteins, as specialized secretions of host-infecting pathogens, play important roles in disrupting host defense systems. At present, the role of the effector secreted by A. solani during infection remains unclear. We report the identification and characterization of AsCEP112, an effector required for A. solani virulence.


Whole genome analysis of Bacillus amyloliquefaciens TA-1, a promising biocontrol agent against Cercospora arachidicola pathogen of early leaf spot in Arachis hypogaea L.

  • Chen Wang‎ et al.
  • BMC plant biology‎
  • 2023‎

Early leaf spot disease, caused by Cercospora arachidicola, is a devastating peanut disease that has severely impacted peanut production and quality. Chemical fungicides pollute the environment; however, Bacillus bacteria can be used as an environmentally friendly alternative to chemical fungicides. To understand the novel bacterial strain and unravel its molecular mechanism, De novo whole-genome sequencing emerges as a rapid and efficient omics approach.


Exogenous auxin regulates the growth and development of peach fruit at the expansion stage by mediating multiple-hormone signaling.

  • Yanping Zhang‎ et al.
  • BMC plant biology‎
  • 2023‎

Fruit expansion stage is crucial to fruit yield and quality formation, and auxin plays a significant role by mediating multi-hormone signals during fruit expansion. However, till now, it is still unclear of the molecular regulatory network during auxin-mediated peach fruit expansion.


VvmiR160s/VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy.

  • Wenying Zhang‎ et al.
  • BMC plant biology‎
  • 2019‎

Grape (Vitis vinifera) is highly sensitive to gibberellin (GA), which effectively induce grape parthenocarpy. Studies showed that miR160s and their target AUXIN RESPONSIVE FACTOR (ARF) responding hormones are indispensable for various aspects of plant growth and development, but their functions in GA-induced grape parthenocarpy remain elusive.


Identification of miRNAs-mediated seed and stone-hardening regulatory networks and their signal pathway of GA-induced seedless berries in grapevine (V. vinifera L.).

  • Peipei Wang‎ et al.
  • BMC plant biology‎
  • 2021‎

Stone-hardening stage is crucial to the development of grape seed and berry quality. A significant body of evidence supports the important roles of MicroRNAs in grape-berry development, but their specific molecular functions during grape stone-hardening stage remain unclear.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: