Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 355 papers

Tumor growth decreases NK and B cells as well as common lymphoid progenitor.

  • John Richards‎ et al.
  • PloS one‎
  • 2008‎

It is well established that chronic tumor growth results in functional inactivation of T cells and NK cells. It is less clear, however, whether lymphopoeisis is affected by tumor growth.


Signal regulatory protein alpha negatively regulates beta2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis.

  • Dan-Qing Liu‎ et al.
  • PloS one‎
  • 2008‎

Signal regulate protein alpha (SIRPalpha) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2) integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis.


Combining spatial-temporal and phylogenetic analysis approaches for improved understanding on global H5N1 transmission.

  • Lu Liang‎ et al.
  • PloS one‎
  • 2010‎

Since late 2003, the highly pathogenic influenza A H5N1 had initiated several outbreak waves that swept across the Eurasia and Africa continents. Getting prepared for reassortment or mutation of H5N1 viruses has become a global priority. Although the spreading mechanism of H5N1 has been studied from different perspectives, its main transmission agents and spread route problems remain unsolved.


MiR-RACE, a new efficient approach to determine the precise sequences of computationally identified trifoliate orange (Poncirus trifoliata) microRNAs.

  • Changnian Song‎ et al.
  • PloS one‎
  • 2010‎

Among the hundreds of genes encoding miRNAs in plants reported, much more were predicted by numerous computational methods. However, unlike protein-coding genes defined by start and stop codons, the ends of miRNA molecules do not have characteristics that can be used to define the mature miRNAs exactly, which made computational miRNA prediction methods often cannot predict the accurate location of the mature miRNA in a precursor with nucleotide-level precision. To our knowledge, there haven't been reports about comprehensive strategies determining the precise sequences, especially two termini, of these miRNAs.


Nationwide molecular surveillance of pandemic H1N1 influenza A virus genomes: Canada, 2009.

  • Morag Graham‎ et al.
  • PloS one‎
  • 2011‎

In April 2009, a novel triple-reassortant swine influenza A H1N1 virus ("A/H1N1pdm"; also known as SOIV) was detected and spread globally as the first influenza pandemic of the 21(st) century. Sequencing has since been conducted at an unprecedented rate globally in order to monitor the diversification of this emergent virus and to track mutations that may affect virus behavior.


Development and validation of a 3-Plex RT-qPCR assay for the simultaneous detection and quantitation of the three PML-RARa fusion transcripts in acute promyelocytic leukemia.

  • Zhanguo Chen‎ et al.
  • PloS one‎
  • 2015‎

Rapid diagnosis of acute promyelocytic leukemia (APL) with promyelocytic leukemia-retinoic acid receptor alpha (PML-RARa) contributes to a highly effective therapy with all-trans retinoic acid (ATRA). Real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) is a valuable tool to diagnose APL with PML-RARa. However, a single RT-qPCR analysis, which is laborious and costly, has to be performed in three reactions to determine whether one of the three PML-RARa transcripts is present and to quantify the involved transcript. This paper describes a novel TaqMan MGB probe-based 3-plex RT-qPCR assay in a single reaction to detect simultaneously the three PML-RARa transcripts. Specific primers and probe were designed, and the results were further normalized to the Abelson gene. The detection results for the serially diluted plasmid indicate that the analytical sensitivity was 10 copies per reaction for PML-RARa bcr1, bcr2, and bcr3. A relatively high sensitivity of 10-4 was achieved with this assay when analyzing the bcr1 transcripts obtained from the NB4 cell line. The reproducibility was satisfactory because the coefficients of variation of cycle threshold values were less than 3% for both inter- and intra-assays. After testing 319 newly diagnosed patients with leukemia (including 61 APL cases), the results of the 3-plex RT-qPCR assay completely agreed with the traditional methods used for the detection of PML-RARa. The quantitative results of the 3-plex RT-qPCR were highly correlated with the single RT-qPCR and showed similar assay sensitivity for 60 PML-RARa positive APL samples at diagnosis and 199 samples from 57 patients during follow-up. Interestingly, one PML-RARa bcr2 case at diagnosis with breakpoint at 1579, which was not detected by the single RT-q-PCR, was detected by the 3-plex RT-qPCR assay. The 3-plex RT-qPCR assay is a specific, sensitive, stable, and cost-effective method that can be used for the rapid diagnosis and treatment monitoring of APL with PML-RARa.


Prognostic Value and Clinicopathology Significance of MicroRNA-200c Expression in Cancer: A Meta-Analysis.

  • Jianchun Wu‎ et al.
  • PloS one‎
  • 2015‎

MiR-200c has been shown to be related to cancer formation and progression. However, the prognostic and clinicopathologic significance of miR-200c expression in cancer remain inconclusive. We carried out this systematic review and meta-analysis to investigate the prognostic value of miR-200c expression in cancer. Pooled hazard ratios (HRs) of miR-200c for overall survival (OS) and progression-free survival (PFS) were calculated to measure the effective value of miR-200c expression on prognosis. The association between miR-200c expression and clinical significance was measured by odds ratios (ORs). Twenty-three studies were included in our meta-analysis. We found that miR-200c was not significantly correlated with OS (HR = 1.41, 95%Cl: 0.95-2.10; P = 0.09) and PFS (HR = 1.12, 95%Cl: 0.68-1.84; P = 0.67) in cancer. In our subgroup analysis, higher expression of miR-200c was significantly associated with poor OS in blood (HR = 2.10, 95%CI: 1.52-2.90, P<0.00001). Moreover, in clinicopathology analysis, miR-200c expression in blood was significantly associated with TNM stage, lymph node metastasis and distant metastasis. MiR-200c may have the potential to become a new blood biomarker to monitor cancer prognosis and progression.


Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2.

  • Chen Wang‎ et al.
  • PloS one‎
  • 2015‎

A better understanding of the effects of human adipocytes on breast cancer cells may lead to the development of new treatment strategies. We explored the effects of adipocytes on the migration and invasion of breast cancer cells both in vitro and in vivo.


CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells.

  • Yan Li‎ et al.
  • PloS one‎
  • 2014‎

The pluripotency of embryonic stem cells (ESCs) is maintained by a small group of master transcription factors including Oct4, Sox2 and Nanog. These core factors form a regulatory circuit controlling the transcription of a number of pluripotency factors including themselves. Although previous studies have identified transcriptional regulators of this core network, the cis-regulatory DNA sequences required for the transcription of these key pluripotency factors remain to be defined. We analyzed epigenomic data within the 1.5 Mb gene-desert regions around the Sox2 gene and identified a 13kb-long super-enhancer (SE) located 100kb downstream of Sox2 in mouse ESCs. This SE is occupied by Oct4, Sox2, Nanog, and the mediator complex, and physically interacts with the Sox2 locus via DNA looping. Using a simple and highly efficient double-CRISPR genome editing strategy we deleted the entire 13-kb SE and characterized transcriptional defects in the resulting monoallelic and biallelic deletion clones with RNA-seq. We showed that the SE is responsible for over 90% of Sox2 expression, and Sox2 is the only target gene along the chromosome. Our results support the functional significance of a SE in maintaining the pluripotency transcription program in mouse ESCs.


SGO1 maintains bovine meiotic and mitotic centromeric cohesions of sister chromatids and directly affects embryo development.

  • Feng-Xia Yin‎ et al.
  • PloS one‎
  • 2013‎

Shugoshin (SGO) is a critical factor that enforces cohesion from segregation of paired sister chromatids during mitosis and meiosis. It has been studied mainly in invertebrates. Knowledge of SGO(s) in a mammalian system has only been reported in the mouse and Hela cells. In this study, the functions of SGO1 in bovine oocytes during meiotic maturation, early embryonic development and somatic cell mitosis were investigated. The results showed that SGO1 was expressed from germinal vesicle (GV) to the metaphase II stage. SGO1 accumulated on condensed and scattered chromosomes from pre-metaphase I to metaphase II. The over-expression of SGO1 did not interfere with the process of homologous chromosome separation, although once separated they were unable to move to the opposing spindle poles. This often resulted in the formation of oocytes with 60 replicated chromosomes. Depletion of SGO1 in GV oocytes affected chromosomal separation resulting in abnormal chromosome alignment at a significantly higher proportion than in control oocytes. Knockdown of SGO1 expression significantly decreased the embryonic developmental rate and quality. To further confirm the function(s) of SGO1 during mitosis, bovine embryonic fibroblast cells were transfected with SGO1 siRNAs. SGO1 depletion induced the premature dissociation of chromosomal cohesion at the centromere and along the chromosome arm giving rise to abnormal appearing mitotic patterns. The results of this study infer that SGO1 is involved in the centromeric cohesion of sister chromatids and chromosomal movement towards the spindle poles. Depletion of SGO1 causes arrestment of cell division in meiosis and mitosis.


Efficacy of mitomycin C in endoscopic dacryocystorhinostomy: a systematic review and meta-analysis.

  • Shi-ming Cheng‎ et al.
  • PloS one‎
  • 2013‎

A number of published comparative studies have been conducted to evaluate the efficacy and safety of intraoperative mitomycin C (MMC) in endoscopic dacryocystorhinostomy (EN-DCR). However, results have not always been consistent. Therefore, we carried out a meta-analysis to compare the clinical results of EN-DCR with and without MMC.


Loss of fibrinogen in zebrafish results in symptoms consistent with human hypofibrinogenemia.

  • Andy H Vo‎ et al.
  • PloS one‎
  • 2013‎

Cessation of bleeding after trauma is a necessary evolutionary vertebrate adaption for survival. One of the major pathways regulating response to hemorrhage is the coagulation cascade, which ends with the cleavage of fibrinogen to form a stable clot. Patients with low or absent fibrinogen are at risk for bleeding. While much detailed information is known about fibrinogen regulation and function through studies of humans and mammalian models, bleeding risk in patients cannot always be accurately predicted purely based on fibrinogen levels, suggesting an influence of modifying factors and a need for additional genetic models. The zebrafish has orthologs to the three components of fibrinogen (fga, fgb, and fgg), but it hasn't yet been shown that zebrafish fibrinogen functions to prevent bleeding in vivo. Here we show that zebrafish fibrinogen is incorporated into an induced thrombus, and deficiency results in hemorrhage. An Fgb-eGFP fusion protein is incorporated into a developing thrombus induced by laser injury, but causes bleeding in adult transgenic fish. Antisense morpholino knockdown results in intracranial and intramuscular hemorrhage at 3 days post fertilization. The observed phenotypes are consistent with symptoms exhibited by patients with hypo- and afibrinogenemia. These data demonstrate that zebrafish possess highly conserved orthologs of the fibrinogen chains, which function similarly to mammals through the formation of a fibrin clot.


Chemokine receptor CXCR7 is a functional receptor for CXCL12 in brain endothelial cells.

  • Yang Liu‎ et al.
  • PloS one‎
  • 2014‎

The chemokine CXCL12 regulates multiple cell functions through its receptor, CXCR4. However, recent studies have shown that CXCL12 also binds a second receptor, CXCR7, to potentiate signal transduction and cell activity. In contrast to CXCL12/CXCR4, few studies have focused on the role of CXCR7 in vascular biology and its role in human brain microvascular endothelial cells (HBMECs) remains unclear. In this report, we used complementary methods, including immunocytofluorescence, Western blot, and flow cytometry analyses, to demonstrate that CXCR7 was expressed on HBMECs. We then employed short hairpin RNA (shRNA) technology to knockdown CXCR7 in HBMECs. Knockdown of CXCR7 in HBMECs resulted in significantly reduced HBMEC proliferation, tube formation, and migration, as well as adhesion to matrigel and tumor cells. Blocking CXCR7 with a specific antibody or small molecule antagonist similarly disrupted HBMEC binding to matrigel or tumor cells. We found that tumor necrosis factor (TNF)-α induced CXCR7 in a time and dose-response manner and that this increase preceded an increase in vascular cell adhesion molecule-1 (VCAM-1). Knockdown of CXCR7 resulted in suppression of VCAM-1, suggesting that the reduced binding of CXCR7-knockdown HBMECs may result from suppression of VCAM-1. Collectively, CXCR7 acted as a functional receptor for CXCL12 in brain endothelial cells. Targeting CXCR7 in tumor vasculature may provide novel opportunities for improving brain tumor therapy.


A synthetic manassantin a derivative inhibits hypoxia-inducible factor 1 and tumor growth.

  • Liwei Lang‎ et al.
  • PloS one‎
  • 2014‎

The dineolignan manassantin A from Saururaceae was recently identified as a hypoxia-inducible factor 1 (HIF-1) inhibitor, but its in-vivo anti-tumor effect has not been explored. We synthesized a series of manassantin A derivatives, and found that replacing the central tetrahydrofuran moiety with a cyclopentane ring yielded a compound (LXY6006) with increased HIF-1-inhibitory activity yet decreased stereochemically complexity amenable to a simplified synthesis scheme. LXY6006 inhibited HIF-1α nuclear accumulation induced by hypoxia, and inhibited cancer cell growth as a consequence of G2/M arrest. Oral administration of LXY6006 significantly inhibited growth of breast, lung, and pancreatic tumors implanted in nude mice. These results indicate that LXY6006 represents a novel class of agents targeting a broad range of human cancers.


Tetramethoxychalcone, a chalcone derivative, suppresses proliferation, blocks cell cycle progression, and induces apoptosis of human ovarian cancer cells.

  • Zihao Qi‎ et al.
  • PloS one‎
  • 2014‎

In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3',4',5'- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer.


Epoxyeicosatrienoic acids attenuating hypotonic-induced apoptosis of IMCD cells via γ-ENaC inhibition.

  • Luyun Wang‎ et al.
  • PloS one‎
  • 2014‎

Inner medulla collecting duct (IMCD) cells are the key part for urinary concentration. Hypotonic stress may trigger apoptosis of IMCD cells and induce renal injury. Epoxyeicosatrienoic acids (EETs) play an important role in anti-apoptosis, but their roles in hypotonic-induced apoptosis of IMCD cells are still unclear. Here we found increasing exogenous 11, 12-EET or endogenous EETs with Ad-CMV-CYP2C23-EGFP transfection decreased apoptosis of IMCD cells induced by hypotonic stress. Moreover, up-regulation of γ-ENaC induced by hypotonic stress was abolished by elevation of exogenous or endogenous EETs. Collectively, this study illustrated that EETs attenuated hypotonic-induced apoptosis of IMCD cells, and that regulation of γ-ENAC may be a possible mechanism contributing to the anti-apoptotic effect of EETs in response to hypotonic stress.


Lin28a protects against hypoxia/reoxygenation induced cardiomyocytes apoptosis by alleviating mitochondrial dysfunction under high glucose/high fat conditions.

  • Mingming Zhang‎ et al.
  • PloS one‎
  • 2014‎

The aim of the present study was to investigate the role of Lin28a in protecting against hypoxia/reoxygenation (H/R)-induced cardiomyocytes apoptosis under high glucose/high fat (HG/HF) conditions.


Outer Balloon Ligation Increases Success Rate of Ischemia-Reperfusion Injury Model in Mice.

  • Fengwang Hu‎ et al.
  • PloS one‎
  • 2016‎

Coronary artery disease is a growing public health problem and a major cause of morbidity and mortality. Experimental animal models provide valuable tools for studying myocardial ischemia reperfusion (I/R) injury in vivo.


A Comparative Study on Antioxidant System in Fish Hepatopancreas and Intestine Affected by Choline Deficiency: Different Change Patterns of Varied Antioxidant Enzyme Genes and Nrf2 Signaling Factors.

  • Pei Wu‎ et al.
  • PloS one‎
  • 2017‎

The liver and intestine are susceptible to the oxidative damage which could result in several diseases. Choline deficiency induced oxidative damage in rat liver cells. Thus, this study aimed to investigate the potential molecular mechanisms responsible for choline deficiency-induced oxidative damage. Juvenile Jian carp were fed diets differing in choline content [165 (deficient group), 310, 607, 896, 1167 and 1820 mg/kg diet] respectively for 65 days. Oxidative damage, antioxidant enzyme activities and related gene expressions in the hepatopancreas and intestine were measured. Choline deficiency decreased choline and phosphatidylcholine contents, and induced oxidative damage in both organs, as evidenced by increased levels of oxidative-stress markers (malondialdehyde, protein carbonyl and 8-hydroxydeoxyguanosine), coupled with decreased activities of antioxidant enzymes [Copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST)]. However, choline deficiency increased glutathione contents in the hepatopancreas and intestine. Furthermore, dietary choline deficiency downregulated mRNA levels of MnSOD, GPx1b, GST-rho, mGST3 and Kelch-like ECH associating protein 1 (Keap1b) in the hepatopancreas, MnSOD, GPx1b, GPx4a, GPx4b, GST-rho, GST-theta, GST-mu, GST-alpha, GST-pi and GST-kappa in the intestine, as well as intestinal Nrf2 protein levels. In contrast, choline deficiency upregulated the mRNA levels of GPx4a, GPx4b, mGST1, mGST2, GST-theta, GST-mu, Keap1a and PKC in the hepatopancreas, mGST3, nuclear factor erythoid 2-related factor 2 (Nrf2) and Keap1a in the intestine, as well as hepatopancreatic Nrf2 protein levels. This study provides new evidence that choline deficiency-induced oxidative damage is associated with changes in the transcription of antioxidant enzyme and Nrf2/Keap1 signaling molecules in the hepatopancreas and intestine. Additionally, this study firstly indicated that choline deficiency induced varied change patterns of different GPx and GST isoforms. Meanwhile, the changes of some GPx and GST isoforms caused by choline deficiency in the intestine were contrary to those in the hepatopancreas.


Low-dose oral sirolimus and the risk of menstrual-cycle disturbances and ovarian cysts: analysis of the randomized controlled SUISSE ADPKD trial.

  • Matthias Braun‎ et al.
  • PloS one‎
  • 2012‎

Sirolimus has been approved for clinical use in non proliferative and proliferative disorders. It inhibits the mammalian target of rapamycin (mTOR) signaling pathway which is also known to regulate ovarian morphology and function. Preliminary observational data suggest the potential for ovarian toxicity but this issue has not been studied in randomized controlled trials. We reviewed the self-reported occurrence of menstrual cycle disturbances and the appearance of ovarian cysts post hoc in an open label randomized controlled phase II trial conducted at the University Hospital Zürich between March 2006 and March 2010. Adult females with autosomal dominant polycystic kidney disease, an inherited kidney disease not known to affect ovarian morphology and function, were treated with 1.3 to 1.5 mg sirolimus per day for a median of 19 months (N = 21) or standard care (N = 18). Sirolimus increased the risk of both oligoamenorrhea (hazard ratio [HR] 4.3, 95% confidence interval [CI] 1.1 to 29) and ovarian cysts (HR 4.4, CI 1.1 to 26); one patient was cystectomized five months after starting treatment with sirolimus. We also studied mechanisms of sirolimus-associated ovarian toxicity in rats. Sirolimus amplified signaling in rat ovarian follicles through the pro-proliferative phosphatidylinositol 3-kinase pathway. Low dose oral sirolimus increases the risk of menstrual cycle disturbances and ovarian cysts and monitoring of sirolimus-associated ovarian toxicity is warranted and might guide clinical practice with mammalian target of rapamycin inhibitors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: