Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 139 papers

Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer.

  • Juliet D French‎ et al.
  • Oncotarget‎
  • 2016‎

Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.


NDN is an imprinted tumor suppressor gene that is downregulated in ovarian cancers through genetic and epigenetic mechanisms.

  • Hailing Yang‎ et al.
  • Oncotarget‎
  • 2016‎

NDN is a maternally imprinted gene consistently expressed in normal ovarian epithelium, is dramatically downregulated in the majority of ovarian cancers. Little or no NDN expression could be detected in 73% of 351 epithelial ovarian cancers. NDN was also downregulated in 10 ovarian cancer cell lines with total loss in 6 of 10. Re-expression of NDN decreased Bcl-2 levels and induced apoptosis, which significantly inhibited ovarian cancer cell growth in cell culture and in xenografts. In addition, re-expression of NDN inhibited cell migration by decreasing actin stress fiber and focal adhesion complex formation through deactivation of Src, FAK and RhoA. Loss of NDN expression in ovarian cancers could be attributed to LOH in 28% of 18 informative cases and to hypermethylation of CpG sites 1 and 2 of NDN promoter in 23% and 30% of 43 ovarian cancers, respectively. Promoter hypermethylation was also found in 5 of 10 ovarian cancer cell lines. Treatment with the demethylating agent 5-aza-2'-deoxycytidine restored NDN expression in 4 of 7 cell lines with enhanced promoter methylation levels. These observations support the conclusion that NDN is an imprinted tumor suppressor gene which affects cancer cell motility, invasion and growth and that its loss of function in ovarian cancer can be caused by both genetic and epigenetic mechanisms.


Clinical prognostic significance and pro-metastatic activity of RANK/RANKL via the AKT pathway in endometrial cancer.

  • Jing Wang‎ et al.
  • Oncotarget‎
  • 2016‎

RANK/RANKL plays a key role in metastasis of certain malignant tumors, which makes it a promising target for developing novel therapeutic strategies for cancer. However, the prognostic value and pro-metastatic activity of RANK in endometrial cancer (EC) remain to be determined. Thus, the present study investigated the effect of RANK on the prognosis of EC patients, as well as the pro-metastatic activity of EC cells. The results indicated that those with high expression of RANK showed decreased overall survival and progression-free survival. Statistical analysis revealed the positive correlations between RANK/RANKL expression and metastasis-related factors. Additionally, RANK/RANKL significantly promoted cell migration/invasion via activating AKT/β-catenin/Snail pathway in vitro. However, RANK/RANKL-induced AKT activation could be suppressed after osteoprotegerin (OPG) treatment. Furthermore, the combination of medroxyprogesterone acetate (MPA) and RANKL could in turn attenuate the effect of RANKL alone. Similarly, MPA could partially inhibit the RANK-induced metastasis in an orthotopic mouse model via suppressing AKT/β-catenin/Snail pathway. Therefore, therapeutic inhibition of MPA in RANK/RANKL-induced metastasis was mediated by AKT/β-catenin/Snail pathway both in vitro and in vivo, suggesting a potential target of RANK for gene-based therapy for EC.


Dasatinib induces DNA damage and activates DNA repair pathways leading to senescence in non-small cell lung cancer cell lines with kinase-inactivating BRAF mutations.

  • Shaohua Peng‎ et al.
  • Oncotarget‎
  • 2016‎

Improved therapies are greatly needed for non-small cell lung cancer (NSCLC) that does not harbor targetable kinase mutations or translocations. We previously demonstrated that NSCLC cells that harbor kinase-inactivating BRAF mutations (KIBRAF) undergo senescence when treated with the multitargeted kinase inhibitor dasatinib. Similarly, treatment with dasatinib resulted in a profound and durable response in a patient with KIBRAF NSCLC. However, no canonical pathways explain dasatinib-induced senescence in KIBRAF NSCLC. To investigate the underlying mechanism, we used 2 approaches: gene expression and reverse phase protein arrays. Both approaches showed that DNA repair pathways were differentially modulated between KIBRAF NSCLC cells and those with wild-type (WT) BRAF. Consistent with these findings, dasatinib induced DNA damage and activated DNA repair pathways leading to senescence only in the KIBRAF cells. Moreover, dasatinib-induced senescence was dependent on Chk1 and p21, proteins known to mediate DNA damage-induced senescence. Dasatinib also led to a marked decrease in TAZ but not YAP protein levels. Overexpression of TAZ inhibited dasatinib-induced senescence. To investigate other vulnerabilities in KIBRAF NSCLC cells, we compared the sensitivity of these cells with that of WTBRAF NSCLC cells to 79 drugs and identified a pattern of sensitivity to EGFR and MEK inhibitors in the KIBRAF cells. Clinically approved EGFR and MEK inhibitors, which are better tolerated than dasatinib, could be used to treat KIBRAF NSCLC. Our novel finding that dasatinib induced DNA damage and subsequently activated DNA repair pathways leading to senescence in KIBRAF NSCLC cells represents a unique vulnerability with potential clinical applications.


High expression of RUNX1 is associated with poorer outcomes in cytogenetically normal acute myeloid leukemia.

  • Lin Fu‎ et al.
  • Oncotarget‎
  • 2016‎

Depending on its expression level, RUNX1 can act as a tumor promoter or suppressor in hematological malignancies. The clinical impact of RUNX1 expression in cytogenetically normal acute myeloid leukemia (CN-AML) remained unknown, however. We evaluated the prognostic significance of RUNX1 expression using several public microarray datasets. In the testing group (n = 157), high RUNX1 expression (RUNX1high) was associated with poorer overall survival (OS; P = 0.0025) and event-free survival (EFS; P = 0.0025) than low RUNX1 expression (RUNX1low). In addition, the prognostic significance of RUNX1 was confirmed using European Leukemia Net (ELN) genetic categories and multivariable analysis, which was further validated using a second independent CN-AML cohort (n = 162, OS; P = 0.03953). To better understand the mechanisms of RUNX1, we investigated genome-wide gene/microRNAs expression signatures and cell signaling pathways associated with RUNX1 expression status. Several known oncogenes/oncogenic microRNAs and cell signaling pathways were all up-regulated, while some anti-oncogenes and molecules of immune activation were down-regulated in RUNX1high CN-AML patients. These findings suggest RUNX1high is a prognostic biomarker of unfavorable outcome in CN-AML, which is supported by the distinctive gene/microRNA signatures and cell signaling pathways.


Altered Hepa1-6 cells by dimethyl sulfoxide (DMSO)-treatment induce anti-tumor immunity in vivo.

  • Zhengyu Jiang‎ et al.
  • Oncotarget‎
  • 2016‎

Cancer immunotherapy is the use of the immune system to treat cancer. Our current research proposed an optional strategy of activating immune system involving in cancer immunotherapy. When being treated with 2% DMSO in culture medium, Hepa1-6 cells showed depressed proliferation with no significant apoptosis or decreased viability. D-hep cells, Hepa1-6 cells treated with DMSO for 7 days, could restore to the higher proliferation rate in DMSO-free medium, but alteration of gene expression profile was irreversible. Interestingly, tumors from D-hep cells, not Hepa1-6 cells, regressed in wild-type C57BL/6 mice whereas D-hep cells exhibited similar tumorigenesis as Hep1-6 cells in immunodeficient mice. As expected, additional Hepa1-6 cells failed to form tumors in the D-hep-C57 mice in which D-hep cells were eliminated. Further research confirmed that D-hep-C57 mice established anti-tumor immunity against Hepa1-6 cells. Our research proposed viable tumor cells with altered biological features by DMSO-treatment could induce anti-tumor immunity in vivo.


DCTPP1 attenuates the sensitivity of human gastric cancer cells to 5-fluorouracil by up-regulating MDR1 expression epigenetically.

  • Li-Liang Xia‎ et al.
  • Oncotarget‎
  • 2016‎

Gastric cancer (GC) is among the most malignant cancers with high incidence and poor prognoses worldwide as well as in China. dCTP pyrophosphatase 1 (DCTPP1) is overexpressed in GC with a poor prognosis. Given chemotherapeutic drugs share similar structures with pyrimidine nucleotides, the role of DCTPP1 in affecting the drug sensitivity in GC remains unclear and is worthy of investigation. In the present study, we reported that DCTPP1-knockdown GC cell line BGC-823 exhibited more sensitivity to 5-fluorouracil (5-FU), demonstrated by the retardation of cell proliferation, the increase in cell apoptosis, cell cycle arrest at S phase and more DNA damages. Multidrug resistance 1 (MDR1) expression was unexpectedly down-regulated in DCTPP1-knockdown BGC-823 cells together with more intracellular 5-FU accumulation. This was in large achieved by the elevated methylation in promoter region of MDR1 gene. The intracellular 5-methyl-dCTP level increased in DCTPP1-knockdown BGC-823 cells as well. More significantly, the strong correlation of DCTPP1 and MDR1 expression was detectable in clinical GC samples. Our results thus imply a novel mechanism of chemoresistance mediated by the overexpression of DCTPP1 in GC. It is achieved partially through decreasing the concentration of intracellular 5-methyl-dCTP, which in turn results in promoter hypomethylation and hyper-expression of drug resistant gene MDR1. Our study suggests DCTPP1 as a potential indicative biomarker for the predication of chemoresistance in GC.


MicroRNA-33a-3p suppresses cell migration and invasion by directly targeting PBX3 in human hepatocellular carcinoma.

  • Shu-Yan Han‎ et al.
  • Oncotarget‎
  • 2016‎

MicroRNAs (miRNAs) have been shown to function as either oncogenes or tumor suppressors by negatively regulating target genes involved in tumor initiation and progression. In this study, we demonstrated that down-regulation of miR-33a-3p in human primary hepatocellular cancer (HCC) specimens was significantly associated with metastases and poor survival. Over-expression of miR-33a-3p in HepG2 cells remarkably suppressed not only cell growth, migration and invasion, but also tumor growth and metastases in the chick embryo chorioallantoic membrane (CAM) assay, and down-regulated Pre-B-Cell Leukemia Homeobox 3 (PBX3) expression. Conversely, inhibition of miR-33a-3p in Bel-7402 cells resulted in increased of cell growth, spreading and invasion. Furthermore, rescue experiments by over-expression PBX3 completely eliminated the inhibitory effects of miR-33a-3p on tumor growth and metastasis, both in vitro and in vivo. The luciferase assay showed that 3'-untranslated regions (3'-UTRs) of PBX3 were inhibited significantly by miR-33a-3p, while mutations in the miR-33a-3p pairing residues rescued the luciferase expression. Taken together, our findings suggest that miR-33a-3p suppressed the malignant phenotype while also inhibiting PBX3 expression in hepatocellular cancer, implying that miR-33a-3p may be a promising biomarkers and therapy target for HCC intervention.


Downregulation of ATOH8 induced by EBV-encoded LMP1 contributes to the malignant phenotype of nasopharyngeal carcinoma.

  • Zifeng Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Mechanism for the malignant phenotype of nasopharyngeal carcinoma (NPC) remains poorly understood. Epstein-Barr virus (EBV) consistently appears in nearly all malignant NPC patient samples, suggesting the strong etiological link between the malignant phenotype and EBV infection. Here we found that the EBV-encoded latent membrane protein (LMP1) enhanced cell growth, motility, invasion and xenograft tumor growth of NPC. RNA-seq profiling analysis of LMP1-positive NPC patient tissues indicated that widespread gene repression contributed to malignant phenotype of NPC. The transcription factor binding site (TFBS) enrichment analysis indicated a subset of transcription factors including ATOH8, a novel transcript factor which belongs to the basic helix-loop-helix (bHLH) gene family inversely enriched in promoters of up-regulated genes and down-regulated genes. Importantly, the expression of ATOH8 was suppressed in both immortalized normal nasopharyngeal epithelial cells (NPEC) and NPC cells with LMP1 overexpression. The Real-Time PCR and Western Blot assays indicated that ATOH8 decreased expression in NPC cell lines and patient samples. Moreover, by gain- or loss-of-function assays, we demonstrated that ATOH8 inhibition promoted malignant phenotype, whereas ATOH8 restoration reversed malignant phenotype of NPC. Finally, we demonstrated that LMP1 inhibited ATOH8 expression by epigenetically impairing the occupancy of activating H3K4me3 and enhancing the occupancy of repressive H3K27me3 on ATOH8 promoter. Collectively, our study uncovered the occurrence of malignant phenotype of NPC induced by EBV infection and characterized a novel bHLH transcription factor ATOH8 as a new downstream target of LMP1.


CK19 mRNA in blood can predict non-sentinel lymph node metastasis in breast cancer.

  • Xing-Fei Yu‎ et al.
  • Oncotarget‎
  • 2016‎

Reverse-transcription polymerase chain reaction (RT-PCR) is used to detect CK19 mRNA in sentinel lymph node biopsy (SLNB) tissues from breast cancer patients. We examined whether CK19 mRNA in peripheral blood is predictive of non-sentinel lymph node (nSLN) metastasis. Breast cancer cases diagnosed with clinical stage cT1-3cN0 and registered in our medical biobank were identified retrospectively. This study then included 120 breast cancer cases treated at Zhejiang Cancer Hospital from Aug 2014 to Aug 2015, including 60 SLN-positive and 60 SLN-negative cases. CK19 mRNA levels in peripheral blood samples were assessed using RT-PCR prior to tumor removal. During surgery, if SLNB tissue showed evidence of metastasis, axillary lymph node dissection (ALND) was performed. No ALND was performed if SLNB and nSLN tissues were both negative for metastasis. CK19 expression was higher in nSLN-positive patients than in nSLN-negative patients (p < 0.05). Logistic regression indicated that lymphatic vessel invasion and CK19 levels were predictive of nSLN status (p < 0.05). The area under the ROC curve for CK19 was 0.878 (p < 0.05). We conclude that high CK19 levels in peripheral blood may independently predict nSLN metastasis in breast cancer patients.


A novel SAHA-bendamustine hybrid induces apoptosis of leukemia cells.

  • Jing Yu‎ et al.
  • Oncotarget‎
  • 2015‎

Hybrid anticancer drugs are of great therapeutic interests as they can potentially overcome the deficiencies of conventional chemotherapy drugs and improve the efficacy. Many studies have revealed that the combination of histone deacetylase inhibitors (HDACi) and alkylating agents have synergistic effects. We reported a novel hybrid NL-101, in which the side chain of bendamustine was replaced with the hydroxamic acid of HDACi vorinostat (SAHA). NL-101 exhibited efficient anti-proliferative activity on myeloid leukemia cells especially Kasumi-1 and NB4 cells, accompanied by S phase arrest and caspase-3 dependent apoptosis. Importantly, it presented both the properties of HDAC inhibition and DNA damaging, as assessed by the acetylation of histone H3 and DNA double-strand breaks marker γ-H2AX. NL-101 also down-regulated the expression of anti-apoptotic protein Bcl-xL which was involved in the mitochondrial death pathway. Meanwhile, NL-101 induced apoptosis and DNA damage in primary cells from acute myeloid leukemia (AML) patients. NL-101 treatment could significantly prolong the survival time of t(8;21) leukemia mice with enhanced efficacy than bendamustine. These data demonstrate that NL-101 could be a potent and selective agent for leukemia treatment.


A comparative pharmacokinetic study of PARP inhibitors demonstrates favorable properties for niraparib efficacy in preclinical tumor models.

  • Kaiming Sun‎ et al.
  • Oncotarget‎
  • 2018‎

Niraparib is an orally bioavailable and selective poly (ADP-ribose) polymerase (PARP)-1/-2 inhibitor approved for maintenance treatment of both BRCA mutant (mut) and BRCA wildtype (wt) adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancers who have demonstrated a complete or partial response to platinum-based chemotherapy. In patients without germline BRCA mutations (non-gBRCAmut), niraparib improved progression-free survival (PFS) by 5.4 months, whereas another PARP inhibitor (PARPi) olaparib supplied only 1.9 months of improvement in a similar patient population. Previous studies revealed higher cell membrane permeability and volume of distribution (VD) as unique features of niraparib in comparison to other PARPi including olaparib. Here, we explore the potential correlation of these pharmacokinetic properties to preclinical antitumor effects in BRCAwt tumors. Our results show that at steady state, tumor exposure to niraparib is 3.3 times greater than plasma exposure in tumor xenograft mouse models. In comparison, the tumor exposure to olaparib is less than observed in plasma. In addition, niraparib crosses the blood-brain barrier and shows good sustainability in the brain, whereas sustained brain exposure to olaparib is not observed in the same models. Consistent with its favorable tumor and brain distribution, niraparib achieves more potent tumor growth inhibition than olaparib in BRCAwt models and an intracranial tumor model at maximum tolerated doses (MTD). These findings demonstrate favorable pharmacokinetic profiles and potent antitumor effects of niraparib in BRCAwt tumors, consistent with its broader clinical effect in patients with both BRCAmut and BRCAwt tumors.


YAP1 enhances cell proliferation, migration, and invasion of gastric cancer in vitro and in vivo.

  • Dan Sun‎ et al.
  • Oncotarget‎
  • 2016‎

Yes-associated protein 1 (YAP1) plays an important role in the development of carcinomas such as breast, colorectal, and gastric (GC) cancers, but the role of YAP1 in GC has not been investigated comprehensively. The present study strongly suggests that YAP1 and P62 were significantly up-regulated in GC specimens, compared with normal gastric mucosa. In addition, the YAP1high P62high expression was independently associated with poor prognosis in GC (hazard ratio: 1.334, 95% confidence interval: 1.045-1.704, P = 0.021). Stable YAP1 silencing inhibited the proliferation, migration, and invasion of BGC-823 GC cells in vitro and inhibited the growth of xenograft tumor and hematogenous metastasis of BGC-823 GC cells in vivo. The mechanism was associated with inhibited extracellular signal-regulated kinases (ERK)1/2 phosphorylation, elevated E-cadherin protein expression and decreased vimentin protein expression, down-regulated β-catenin protein expression and elevated α-catenin protein expression, and down-regulated long non-coding RNA (lncRNA) expressions including HOX transcript antisense RNA (HOTAIR), H19, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), human large tumor suppressor-2 (LATS2)-AS1-001, and LATS2. YAP1 over-expression promoted the proliferation, migration, and invasion of human immortalized normal gastric mucosa GES-1 cells in vitro by reversing the above signal molecules. Subcutaneous inoculation of GES-1 cells and YAP1-over-expressing GES-1 cells into nude mice did not generate tumors. We successfully established the xenograft tumor models using MKN-45 GC cells, but immunochemistry showed that there was no YAP1 expression in MKN-45 cells. These results suggest that YAP1 is not a direct factor affecting tumor formation, but could accelerate tumor growth and metastasis. Collectively, this study highlights an important role for YAP1 as a promoter of GC growth and metastasis, and suggests that YAP1 could possibly be a potential treatment target for GC.


Optimal hydration volume among high-risk patients with advanced congestive heart failure undergoing coronary angiography.

  • Shi-Qun Chen‎ et al.
  • Oncotarget‎
  • 2018‎

We investigated the relationship between weight-adjusted hydration volumes and the risk of developing contrast-induced acute kidney injury (CI-AKI) and worsening heart failure (WHF) and explored the relative safety of optimal hydration volumes in patients with advanced congestive heart failure (CHF) undergoing coronary angiography (CAG) or percutaneous coronary intervention. We included 551 patients with advanced CHF (New York Heart Association class > 2 or history of pulmonary edema) undergoing CAG (follow-up period 2.62 ± 0.9 years). There was a significant association between hydration volume-to-weight ratio (HV/W) (quintile Q1, Q2, Q3, Q4, and Q5) and the incidence of CI-AKI (3.7%, 14.6%, 14.3%, 21.1%, and 31.5%, respectively) and WHF (3.6%, 5.4%, 8.3%, 13.6%, and 19.1%, respectively) (all P-trend < 0.001). Receiver operating curve analysis indicated that HV/W = 15 mL/kg and the mean HV/W (60.87% sensitivity and 64.96% specificity) were fair discriminators for CI-AKI (C-statistic 0.696). HV/W >15 mL/kg independently predicted CI-AKI (adjusted odds ratio [OR] 2.33; P = 0.016) and WHF (adjusted OR 2.13; P = 0.018). Moreover, both CI-AKI and WHF were independently associated with increased long-term mortality. Thus, for high-risk patients with advanced CHF undergoing CAG, HV/W > 15 mL/kg might be associated with an increased risk of developing CI-AKI and WHF. The potential benefits of a personalized limitation of hydration volume need further evaluation.


Transcriptional downregulation of microRNA-19a by ROS production and NF-κB deactivation governs resistance to oxidative stress-initiated apoptosis.

  • Jun Hong‎ et al.
  • Oncotarget‎
  • 2017‎

Cell apoptosis is one of the main pathological alterations during oxidative stress (OS) injury. Previously, we corroborated that nuclear factor-κB (NF-κB) transactivation confers apoptosis resistance against OS in mammalian cells, yet the underlying mechanisms remain enigmatic. Here we report that microRNA-19a (miR-19a) transcriptionally regulated by reactive oxygen species (ROS) production and NF-κB deactivation prevents OS-initiated cell apoptosis through cylindromatosis (CYLD) repression. CYLD contributes to OS-initiated cell apoptosis, for which NF-κB deactivation is essential. MiR-19a directly represses CYLD via targeting 3' UTR of CYLD, thereby antagonizing OS-initiated apoptosis. CYLD repression by miR-19a restores the IKKβ phosphorylation, RelA disassociation from IκBα, IκBα polyubiquitination and degradation, RelA recruitment at VEGF gene promoter as well as VEGF secretion in the context of OS. Either pharmacological deactivation of NF-κB or genetic upregulation of CYLD compromises the apoptosis-resistant phenotypes of miR-19a. Furthermore, miR-19a is transcriptionally downregulated upon OS in two distinct processes that require ROS production and NF-κB deactivation. VEGF potentiates the ability of miR-19a to activate NF-κB and render apoptosis resistance. Our findings underscore a putative mechanism whereby CYLD repression-mediated and NF-κB transactivation-dependent miR-19a regulatory feedback loop prevents cell apoptosis in response to OS microenvironment.


Prognostic role of podocalyxin-like protein expression in various cancers: A systematic review and meta-analysis.

  • Jing Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Several studies were conducted to explore the prognostic significance of podocalyxin-like protein (PODXL) expression in various cancers, with contradictory. This study aims to summarize the prognostic significance of PODXL expression in cancers. PubMed, the Cochrane Library and Embase were completely retrieved. The prospective or retrospective studies focusing on the prognostic role of PODXL expression in cancers were eligible. The endpoints were overall survival (OS), disease-specific survival (DSS) and disease-free survival (DFS).12 studies involving a total of 5,309 patients were identified. The results indicated that high PODXL expression was significantly associated with worse OS when compared to the low PODXL expression (HR=1.76, 95%CI=1.53-2.04, p<0.00001; I2=41%, p=0.08). And similar results were detected in the subgroup analysis of analysis model, ethnicity, sample size, tumor type and antibody type. And the results also showed that high PODXL expression was obviously related to shorter DSS (HR=2.47, 95%CI=1.53-3.99, p=0.0002; I2=66%, p=0.03) and DFS (HR=2.12, 95%CI=1.58-2.85, p<0.00001; I2=19%, p=0.29). In conclusion, it was revealed that high PODXL expression is an unfavorable predictor of OS, DSS and DFS in patients with cancers, and high PODXL expression is a promising prognostic biomarker for cancers, especially for patients in European.


Value of SOFA, APACHE IV and SAPS II scoring systems in predicting short-term mortality in patients with acute myocarditis.

  • Dating Sun‎ et al.
  • Oncotarget‎
  • 2017‎

Acute myocarditis is an uncommon and potentially life-threatening disease. Scoring systems are essential for predicting outcome and evaluating the therapy effect of adult patients with acute myocarditis. The aim of this study was to determine the value of the Sequential Organ Failure Assessment (SOFA), Acute Physiology and Chronic Health Evaluation IV (APACHE IV) and second Simplified Acute Physiology Score (SAPS II) scoring systems in predicting short-term mortality of these patients. We retrospectively analyzed data from 305 adult patients suffering from acute myocarditis between April 2005 and August 2016. The association between the value of admission SOFA, APACHE IV and SAPS II scores and risk of short-term mortality was determined. Multivariate Cox analysis showed that SOFA, APACHE IV and SAPS II scores were independent risk factors of death in patients with acute myocarditis. For each scoring system, Kaplan-Meier analysis showed that the cumulative short-term mortality was significantly higher in patients with higher admission scores compared with those with lower admission scores. For the prediction of short-term mortality in a patient with acute myocarditis, SAPS II had the highest accuracy followed by the APACHE IV and SOFA scores.


The protective autophagy activated by GANT-61 in MYCN amplified neuroblastoma cells is mediated by PERK.

  • Jing Wang‎ et al.
  • Oncotarget‎
  • 2018‎

The proto-oncogene MYC can trigger the unfolded protein response (UPR). The double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), one of three primary branches of the UPR, is a key regulator of autophagy, promoting tumorigenesis. Upon activation of PERK, there is an increase in phosphorylation of the eukaryotic initiation factor-2 alpha (eIF2α), which in turn, activates the transcription factor-4 (ATF4), responsible for an increased expression of LC3, a common autophagy marker. PERK is repressed upon GLI1 and GLI2 induction. GANT-61 is an inhibitor of GLI1 and GLI2, known to reduce autophagy in MYCN non-amplified, but not in MYCN amplified neuroblastoma (NB) cells. In our study, we tested the effect of the joint administration of a PERK inhibitor (GSK2606414) and the GLI inhibitor GANT-61 to MYCN amplified and MYCN non-amplified NB cells. Our results suggest that inhibition of PERK impairs GANT-61 induced autophagy in NB cells with MYCN amplification, but had no effect on the MYCN non-amplified NB cells. In summary, PERK seems to be a good therapeutic target for NB. Inhibition of PERK reduces autophagy in MYCN amplified NB cells, thus amplifying the efficacy of the GLI inhibitor GANT-61 in reducing proliferation of this type of cancer cells.


Nε-carboxymethyl-lysine promotes calcium deposition in VSMCs via intracellular oxidative stress-induced PDK4 activation and alters glucose metabolism.

  • Wen-Qi Ma‎ et al.
  • Oncotarget‎
  • 2017‎

Diabetes and vascular calcification are intrinsically linked. We previously reported that advanced glycation end products (AGEs) accelerate calcium deposition in vascular smooth muscle cells (VSMCs) via excessive oxidative stress. However, the underlying mechanism remains poorly understood. Pyruvate dehydrogenase kinase 4 (PDK4) is an important mitochondrial matrix enzyme in cellular energy metabolism. Since hyperactivation of PDK4 has been reported in calcified vessels and in patients with diabetes mellitus, inhibition of PDK4 expression may be a strategy for the prevention of diabetic vascular calcification. In this study, we used a rat VSMC model to investigate the role of PDK4 in diabetic vascular calcification and further explore the underlying mechanisms. We observed that Nε-carboxymethyl-lysine (CML), which is a major immunogen of AGEs, accelerated calcium deposition in VSMCs through PDK4 activation. An elevated level of reactive oxygen species (ROS) acted as a signal transduction intermediate to increase PDK4 expression. Either inhibition of PDK4 expression or RAGE (receptor for AGEs) blockade attenuated CML-induced VSMC calcification, as shown by decreased alkaline phosphatase (ALP) activity and runt-related transcription factor 2 (RUNX2) expression. Glucose consumption and lactate production were increased during CML-induced VSMC calcification. Importantly, CML accelerates glycolysis in VSMCs via a PDK4-dependent pathway. In conclusion, this study demonstrates a novel mechanism by which CML promotes VSMC calcification via PDK4 activation and alters glucose metabolism in VSMCs.


Functional characterization of a novel transcript of ERCC1 in chemotherapy resistance of ovarian cancer.

  • Jia Liu‎ et al.
  • Oncotarget‎
  • 2017‎

Approximately 15-20% of ovarian cancer patients receiving platinum-based chemotherapy are primary platinum-resistant. Identification of these patients and transfer to other more effective therapy could reduce the morbidity of ovarian cancer. ERCC1 is a DNA repair gene which can complex with XPF to repair cisplatin-induced DNA damage and cause chemotherapy resistance. In this study, we found a novel ERCC1 transcript initiated upstream of the normal transcription initiation site. The expression of this larger ERCC1 transcript dramatically increased following cisplatin treatment in ovarian cancer cells and was regulated by the MAPK pathway. This phenomenon conferred enhanced cisplatin resistance on ovarian cancer cells, and was confirmed with chemosensitive and chemoresistant patients' samples. Our data suggested that larger ERCC1 transcript levels correlated with the outcome of platinum-based chemotherapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: