Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 115 papers

High expression of RUNX1 is associated with poorer outcomes in cytogenetically normal acute myeloid leukemia.

  • Lin Fu‎ et al.
  • Oncotarget‎
  • 2016‎

Depending on its expression level, RUNX1 can act as a tumor promoter or suppressor in hematological malignancies. The clinical impact of RUNX1 expression in cytogenetically normal acute myeloid leukemia (CN-AML) remained unknown, however. We evaluated the prognostic significance of RUNX1 expression using several public microarray datasets. In the testing group (n = 157), high RUNX1 expression (RUNX1high) was associated with poorer overall survival (OS; P = 0.0025) and event-free survival (EFS; P = 0.0025) than low RUNX1 expression (RUNX1low). In addition, the prognostic significance of RUNX1 was confirmed using European Leukemia Net (ELN) genetic categories and multivariable analysis, which was further validated using a second independent CN-AML cohort (n = 162, OS; P = 0.03953). To better understand the mechanisms of RUNX1, we investigated genome-wide gene/microRNAs expression signatures and cell signaling pathways associated with RUNX1 expression status. Several known oncogenes/oncogenic microRNAs and cell signaling pathways were all up-regulated, while some anti-oncogenes and molecules of immune activation were down-regulated in RUNX1high CN-AML patients. These findings suggest RUNX1high is a prognostic biomarker of unfavorable outcome in CN-AML, which is supported by the distinctive gene/microRNA signatures and cell signaling pathways.


Downregulation of amplified in breast cancer 1 contributes to the anti-tumor effects of sorafenib on human hepatocellular carcinoma.

  • Ming Li‎ et al.
  • Oncotarget‎
  • 2016‎

Multi-kinase inhibitor sorafenib represents a major breakthrough in the therapy of advanced hepatocellular carcinoma (HCC). Amplified in breast cancer 1 (AIB1) is frequently overexpressed in human HCC tissues and promotes HCC progression. In this study, we investigated the effects of sorafenib on AIB1 expression and the role of AIB1 in anti-tumor effects of sorafenib. We found that sorafenib downregulated AIB1 protein expression by inhibiting AIB1 mRNA translation through simultaneously blocking eIF4E and mTOR/p70S6K/RP-S6 signaling. Knockdown of AIB1 significantly promoted sorafenib-induced cell death, whereas overexpression of AIB1 substantially diminished sorafenib-induced cell death. Downregulation of AIB1 contributed to sorafenib-induced cell death at least in part through upregulating the levels of reactive oxygen species in HCC cells. In addition, resistance to sorafenib-induced downregulation of AIB1 protein contributes to the acquired resistance of HCC cells to sorafenib-induced cell death. Collectively, our study implicates that AIB1 is a molecular target of sorafenib and downregulation of AIB1 contributes to the anti-tumor effects of sorafenib.


CK19 mRNA in blood can predict non-sentinel lymph node metastasis in breast cancer.

  • Xing-Fei Yu‎ et al.
  • Oncotarget‎
  • 2016‎

Reverse-transcription polymerase chain reaction (RT-PCR) is used to detect CK19 mRNA in sentinel lymph node biopsy (SLNB) tissues from breast cancer patients. We examined whether CK19 mRNA in peripheral blood is predictive of non-sentinel lymph node (nSLN) metastasis. Breast cancer cases diagnosed with clinical stage cT1-3cN0 and registered in our medical biobank were identified retrospectively. This study then included 120 breast cancer cases treated at Zhejiang Cancer Hospital from Aug 2014 to Aug 2015, including 60 SLN-positive and 60 SLN-negative cases. CK19 mRNA levels in peripheral blood samples were assessed using RT-PCR prior to tumor removal. During surgery, if SLNB tissue showed evidence of metastasis, axillary lymph node dissection (ALND) was performed. No ALND was performed if SLNB and nSLN tissues were both negative for metastasis. CK19 expression was higher in nSLN-positive patients than in nSLN-negative patients (p < 0.05). Logistic regression indicated that lymphatic vessel invasion and CK19 levels were predictive of nSLN status (p < 0.05). The area under the ROC curve for CK19 was 0.878 (p < 0.05). We conclude that high CK19 levels in peripheral blood may independently predict nSLN metastasis in breast cancer patients.


Clinical prognostic significance and pro-metastatic activity of RANK/RANKL via the AKT pathway in endometrial cancer.

  • Jing Wang‎ et al.
  • Oncotarget‎
  • 2016‎

RANK/RANKL plays a key role in metastasis of certain malignant tumors, which makes it a promising target for developing novel therapeutic strategies for cancer. However, the prognostic value and pro-metastatic activity of RANK in endometrial cancer (EC) remain to be determined. Thus, the present study investigated the effect of RANK on the prognosis of EC patients, as well as the pro-metastatic activity of EC cells. The results indicated that those with high expression of RANK showed decreased overall survival and progression-free survival. Statistical analysis revealed the positive correlations between RANK/RANKL expression and metastasis-related factors. Additionally, RANK/RANKL significantly promoted cell migration/invasion via activating AKT/β-catenin/Snail pathway in vitro. However, RANK/RANKL-induced AKT activation could be suppressed after osteoprotegerin (OPG) treatment. Furthermore, the combination of medroxyprogesterone acetate (MPA) and RANKL could in turn attenuate the effect of RANKL alone. Similarly, MPA could partially inhibit the RANK-induced metastasis in an orthotopic mouse model via suppressing AKT/β-catenin/Snail pathway. Therefore, therapeutic inhibition of MPA in RANK/RANKL-induced metastasis was mediated by AKT/β-catenin/Snail pathway both in vitro and in vivo, suggesting a potential target of RANK for gene-based therapy for EC.


Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer.

  • Juliet D French‎ et al.
  • Oncotarget‎
  • 2016‎

Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.


Altered Hepa1-6 cells by dimethyl sulfoxide (DMSO)-treatment induce anti-tumor immunity in vivo.

  • Zhengyu Jiang‎ et al.
  • Oncotarget‎
  • 2016‎

Cancer immunotherapy is the use of the immune system to treat cancer. Our current research proposed an optional strategy of activating immune system involving in cancer immunotherapy. When being treated with 2% DMSO in culture medium, Hepa1-6 cells showed depressed proliferation with no significant apoptosis or decreased viability. D-hep cells, Hepa1-6 cells treated with DMSO for 7 days, could restore to the higher proliferation rate in DMSO-free medium, but alteration of gene expression profile was irreversible. Interestingly, tumors from D-hep cells, not Hepa1-6 cells, regressed in wild-type C57BL/6 mice whereas D-hep cells exhibited similar tumorigenesis as Hep1-6 cells in immunodeficient mice. As expected, additional Hepa1-6 cells failed to form tumors in the D-hep-C57 mice in which D-hep cells were eliminated. Further research confirmed that D-hep-C57 mice established anti-tumor immunity against Hepa1-6 cells. Our research proposed viable tumor cells with altered biological features by DMSO-treatment could induce anti-tumor immunity in vivo.


Dasatinib induces DNA damage and activates DNA repair pathways leading to senescence in non-small cell lung cancer cell lines with kinase-inactivating BRAF mutations.

  • Shaohua Peng‎ et al.
  • Oncotarget‎
  • 2016‎

Improved therapies are greatly needed for non-small cell lung cancer (NSCLC) that does not harbor targetable kinase mutations or translocations. We previously demonstrated that NSCLC cells that harbor kinase-inactivating BRAF mutations (KIBRAF) undergo senescence when treated with the multitargeted kinase inhibitor dasatinib. Similarly, treatment with dasatinib resulted in a profound and durable response in a patient with KIBRAF NSCLC. However, no canonical pathways explain dasatinib-induced senescence in KIBRAF NSCLC. To investigate the underlying mechanism, we used 2 approaches: gene expression and reverse phase protein arrays. Both approaches showed that DNA repair pathways were differentially modulated between KIBRAF NSCLC cells and those with wild-type (WT) BRAF. Consistent with these findings, dasatinib induced DNA damage and activated DNA repair pathways leading to senescence only in the KIBRAF cells. Moreover, dasatinib-induced senescence was dependent on Chk1 and p21, proteins known to mediate DNA damage-induced senescence. Dasatinib also led to a marked decrease in TAZ but not YAP protein levels. Overexpression of TAZ inhibited dasatinib-induced senescence. To investigate other vulnerabilities in KIBRAF NSCLC cells, we compared the sensitivity of these cells with that of WTBRAF NSCLC cells to 79 drugs and identified a pattern of sensitivity to EGFR and MEK inhibitors in the KIBRAF cells. Clinically approved EGFR and MEK inhibitors, which are better tolerated than dasatinib, could be used to treat KIBRAF NSCLC. Our novel finding that dasatinib induced DNA damage and subsequently activated DNA repair pathways leading to senescence in KIBRAF NSCLC cells represents a unique vulnerability with potential clinical applications.


Tspan5 is an independent favourable prognostic factor and suppresses tumour growth in gastric cancer.

  • Peirong He‎ et al.
  • Oncotarget‎
  • 2016‎

Tetraspanins are believed to interact with specific partner proteins forming tetraspanin-enriched microdomains and regulate some aspects of partner protein functions. However, the role of Tspan5 during pathological processes, particularly in cancer biology, remains unknown. Here we report that Tspan5 is significantly downregulated in gastric cancer (GC) and closely associated with clinicopathological features including tumour size and TNM stage. The expression of Tspan5 is inversely correlated with patient overall survival and is an independent prognostic factor in GC. Upregulation of Tspan5 in tumour cells results in inhibition of cell proliferation and colony formation in vitro and suppression of xenograft growth of GC by reducing tumour cell proliferation in vivo. Thus, Tspan5 functions as a tumour suppressor in stomach to control the tumour growth. Mechanistically, Tspan5 inhibits the cell cycle transition from G1-S phase by increasing the expression of p27 and p15 and decreasing the expression of cyclin D1, CDK4, pRB and E2F1. The correlation of Tspan5 expression with the expression of p27, p15, cyclin D1, CDK4, pRB and E2F1 in vivo are also revealed in xenografted tumours. Reconstitution of either cyclin D1 or CDK4 in Tspan5-overexpressing GC cells rescues the inhibitory phenotype produced by Tspan5, suggesting that cyclin D1/CDK4 play a dominant role in mediating the suppression of tumour growth by Tspan5 in GC. Our results suggest that Tspan5 may serve as a prognostic biomarker for predicting outcome of GC patients and provide new insights into the pathogenesis of GC and rational for the development of clinical intervention strategies against GC.


MicroRNA-33a-3p suppresses cell migration and invasion by directly targeting PBX3 in human hepatocellular carcinoma.

  • Shu-Yan Han‎ et al.
  • Oncotarget‎
  • 2016‎

MicroRNAs (miRNAs) have been shown to function as either oncogenes or tumor suppressors by negatively regulating target genes involved in tumor initiation and progression. In this study, we demonstrated that down-regulation of miR-33a-3p in human primary hepatocellular cancer (HCC) specimens was significantly associated with metastases and poor survival. Over-expression of miR-33a-3p in HepG2 cells remarkably suppressed not only cell growth, migration and invasion, but also tumor growth and metastases in the chick embryo chorioallantoic membrane (CAM) assay, and down-regulated Pre-B-Cell Leukemia Homeobox 3 (PBX3) expression. Conversely, inhibition of miR-33a-3p in Bel-7402 cells resulted in increased of cell growth, spreading and invasion. Furthermore, rescue experiments by over-expression PBX3 completely eliminated the inhibitory effects of miR-33a-3p on tumor growth and metastasis, both in vitro and in vivo. The luciferase assay showed that 3'-untranslated regions (3'-UTRs) of PBX3 were inhibited significantly by miR-33a-3p, while mutations in the miR-33a-3p pairing residues rescued the luciferase expression. Taken together, our findings suggest that miR-33a-3p suppressed the malignant phenotype while also inhibiting PBX3 expression in hepatocellular cancer, implying that miR-33a-3p may be a promising biomarkers and therapy target for HCC intervention.


Downregulation of ATOH8 induced by EBV-encoded LMP1 contributes to the malignant phenotype of nasopharyngeal carcinoma.

  • Zifeng Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Mechanism for the malignant phenotype of nasopharyngeal carcinoma (NPC) remains poorly understood. Epstein-Barr virus (EBV) consistently appears in nearly all malignant NPC patient samples, suggesting the strong etiological link between the malignant phenotype and EBV infection. Here we found that the EBV-encoded latent membrane protein (LMP1) enhanced cell growth, motility, invasion and xenograft tumor growth of NPC. RNA-seq profiling analysis of LMP1-positive NPC patient tissues indicated that widespread gene repression contributed to malignant phenotype of NPC. The transcription factor binding site (TFBS) enrichment analysis indicated a subset of transcription factors including ATOH8, a novel transcript factor which belongs to the basic helix-loop-helix (bHLH) gene family inversely enriched in promoters of up-regulated genes and down-regulated genes. Importantly, the expression of ATOH8 was suppressed in both immortalized normal nasopharyngeal epithelial cells (NPEC) and NPC cells with LMP1 overexpression. The Real-Time PCR and Western Blot assays indicated that ATOH8 decreased expression in NPC cell lines and patient samples. Moreover, by gain- or loss-of-function assays, we demonstrated that ATOH8 inhibition promoted malignant phenotype, whereas ATOH8 restoration reversed malignant phenotype of NPC. Finally, we demonstrated that LMP1 inhibited ATOH8 expression by epigenetically impairing the occupancy of activating H3K4me3 and enhancing the occupancy of repressive H3K27me3 on ATOH8 promoter. Collectively, our study uncovered the occurrence of malignant phenotype of NPC induced by EBV infection and characterized a novel bHLH transcription factor ATOH8 as a new downstream target of LMP1.


Multiple analyses of large-scale genome-wide association study highlight new risk pathways in lumbar spine bone mineral density.

  • Jinsong Wei‎ et al.
  • Oncotarget‎
  • 2016‎

Osteoporosis is a common human complex disease. It is mainly characterized by low bone mineral density (BMD) and low-trauma osteoporotic fractures (OF). Until now, a large proportion of heritability has yet to be explained. The existing large-scale genome-wide association studies (GWAS) provide strong support for the investigation of osteoporosis mechanisms using pathway analysis. Recent findings showed that different risk pathways may be involved in BMD in different tissues. Here, we conducted multiple pathway analyses of a large-scale lumbar spine BMD GWAS dataset (2,468,080 SNPs and 31,800 samples) using two published gene-based analysis software including ProxyGeneLD and the PLINK. Using BMD genes from ProxyGeneLD, we identified 51 significant KEGG pathways with adjusted P<0.01. Using BMD genes from PLINK, we identified 38 significant KEGG pathways with adjusted P<0.01. Interestingly, 33 pathways are shared in both methods. In summary, we not only identified the known risk pathway such as Wnt signaling, in which the top GWAS variants are significantly enriched, but also highlight some new risk pathways. Interestingly, evidence from further supports the involvement of these pathways in MBD.


A comparative pharmacokinetic study of PARP inhibitors demonstrates favorable properties for niraparib efficacy in preclinical tumor models.

  • Kaiming Sun‎ et al.
  • Oncotarget‎
  • 2018‎

Niraparib is an orally bioavailable and selective poly (ADP-ribose) polymerase (PARP)-1/-2 inhibitor approved for maintenance treatment of both BRCA mutant (mut) and BRCA wildtype (wt) adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancers who have demonstrated a complete or partial response to platinum-based chemotherapy. In patients without germline BRCA mutations (non-gBRCAmut), niraparib improved progression-free survival (PFS) by 5.4 months, whereas another PARP inhibitor (PARPi) olaparib supplied only 1.9 months of improvement in a similar patient population. Previous studies revealed higher cell membrane permeability and volume of distribution (VD) as unique features of niraparib in comparison to other PARPi including olaparib. Here, we explore the potential correlation of these pharmacokinetic properties to preclinical antitumor effects in BRCAwt tumors. Our results show that at steady state, tumor exposure to niraparib is 3.3 times greater than plasma exposure in tumor xenograft mouse models. In comparison, the tumor exposure to olaparib is less than observed in plasma. In addition, niraparib crosses the blood-brain barrier and shows good sustainability in the brain, whereas sustained brain exposure to olaparib is not observed in the same models. Consistent with its favorable tumor and brain distribution, niraparib achieves more potent tumor growth inhibition than olaparib in BRCAwt models and an intracranial tumor model at maximum tolerated doses (MTD). These findings demonstrate favorable pharmacokinetic profiles and potent antitumor effects of niraparib in BRCAwt tumors, consistent with its broader clinical effect in patients with both BRCAmut and BRCAwt tumors.


Deguelin suppresses angiogenesis in human hepatocellular carcinoma by targeting HGF-c-Met pathway.

  • Ming Li‎ et al.
  • Oncotarget‎
  • 2018‎

Angiogenesis plays a crucial role in the development of human hepatocellular carcinoma (HCC). In the present study, we found a natural compound, deguelin, has a profound anti-angiogenesis effect on HCC. Deguelin suppressed vascular endothelial growth factor (VEGF)-induced human umbilical vascular endothelial cells (HUVECs) proliferation, migration, invasion, and capillary-like tube formation in vitro and reduced tumor angiogenesis in vivo. We discovered that VEGF receptor-mediated signal transduction cascades in HUVECs were inhibited by deguelin. Deguelin decreased the autocrine of VEGF in HCC cells in a time- and dose-dependent manner. Additionally, deguelin suppressed HGF-induced activation of the c-Met signaling pathway. Knocking down c-Met or inhibition of c-Met activation impaired HGF-mediated VEGF production. Importantly, we produced patient-derived hepatocellular carcinoma xenografts to evaluate the therapeutic effect of deguelin in vivo. Taken together, these results indicate that deguelin could inhibit HCC through suppression of angiogenesis on vascular endothelial cells and reduction of proangiogenic factors in cancer cells.


SAMMSON drives the self-renewal of liver tumor initiating cells through EZH2-dependent Wnt/β-catenin activation.

  • Xiaopeng Li‎ et al.
  • Oncotarget‎
  • 2017‎

Liver cancer is one of the most serious cancers all over the world. Liver tumor initiating cells (TICs) account for tumor initiation and metastasis. However, the regulatory mechanism of liver TICs remains unclear. Here we found long noncoding RNA SAMMSON is highly expressed in liver cancer and liver TICs. SAMMSON silenced cells show impaired self-renewal capacity, while, its overexpression induces enhanced self-renewal. SAMMSON drives the activation of Wnt/β-catenin signaling, and thus promotes liver TIC self-renewal. SAMMSON interacts with EZH2, a core component of PRC2 complex, and inhibits the expression of CTNNBIP1 through EZH2 dependent manner. SAMMSON binds to CTNNBIP1 promoter and recruits EZH2 to CTNNBIP1 promoter. What's more, targeting liver TICs through SAMMSON, EZH2 and Wnt/β-catenin signaling impaired liver TIC self-renewal, decreased tumor propagation and severity. Taken together, SAMMSON drives liver TIC self-renewal through EZH2-dependent Wnt/β-catenin activation.


CDK4/6 inhibition is more active against the glioblastoma proneural subtype.

  • Ming Li‎ et al.
  • Oncotarget‎
  • 2017‎

Glioblastoma (GBM) is the most common and lethal brain tumor. Gene expression profiling has classified GBM into distinct subtypes, including proneural, mesenchymal, and classical, and identifying therapeutic vulnerabilities of these subtypes is an extremely high priority. We leveraged The Cancer Genome Atlas (TCGA) data, in particular for microRNA expression, to seek druggable core pathways in GBM. The E2F1-regulated miR-17˜92 cluster and its analogs are shown to be highly expressed in proneural GBM and in GSC lines, suggesting the E2F cell cycle pathway might be a key driver in proneural GBM. Consistently, CDK4/6 inhibition with palbociclib preferentially inhibited cell proliferation in vitro in a majority of proneural GSCs versus those of other subtypes. Palbociclib treatment significantly prolonged survival of mice with established intracranial xenografts of a proneural GSC line. We show that most of these sensitive PN GSCs expressed higher levels of CDK6 and had intact Rb1, while two GSC lines with CDK4 overexpression and null Rb1 were highly resistant to palbociclib. Importantly, palbociclib treatment of proneural GSCs upregulated mesenchymal-associated markers and downregulated proneural-associated markers, suggesting that CDK4/6 inhibition induced proneural-mesenchymal transition and underscoring the enhanced role of the E2F cell cycle pathway in the proneural subtype. Lastly, the combination of palbociclib and N,N-diethylaminobenzaldehyde, an inhibitor of the mesenchymal driver ALDH1A3, showed strong synergistic inhibitory effects against proneural GSC proliferation. Taken together, our results reveal that proneural GBM has increased vulnerability to CDK4/6 inhibition, and the proneural subtype undergoes dynamic reprogramming upon palbociclib treatment-suggesting the need for a combination therapeutic strategy.


The protective autophagy activated by GANT-61 in MYCN amplified neuroblastoma cells is mediated by PERK.

  • Jing Wang‎ et al.
  • Oncotarget‎
  • 2018‎

The proto-oncogene MYC can trigger the unfolded protein response (UPR). The double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), one of three primary branches of the UPR, is a key regulator of autophagy, promoting tumorigenesis. Upon activation of PERK, there is an increase in phosphorylation of the eukaryotic initiation factor-2 alpha (eIF2α), which in turn, activates the transcription factor-4 (ATF4), responsible for an increased expression of LC3, a common autophagy marker. PERK is repressed upon GLI1 and GLI2 induction. GANT-61 is an inhibitor of GLI1 and GLI2, known to reduce autophagy in MYCN non-amplified, but not in MYCN amplified neuroblastoma (NB) cells. In our study, we tested the effect of the joint administration of a PERK inhibitor (GSK2606414) and the GLI inhibitor GANT-61 to MYCN amplified and MYCN non-amplified NB cells. Our results suggest that inhibition of PERK impairs GANT-61 induced autophagy in NB cells with MYCN amplification, but had no effect on the MYCN non-amplified NB cells. In summary, PERK seems to be a good therapeutic target for NB. Inhibition of PERK reduces autophagy in MYCN amplified NB cells, thus amplifying the efficacy of the GLI inhibitor GANT-61 in reducing proliferation of this type of cancer cells.


Value of SOFA, APACHE IV and SAPS II scoring systems in predicting short-term mortality in patients with acute myocarditis.

  • Dating Sun‎ et al.
  • Oncotarget‎
  • 2017‎

Acute myocarditis is an uncommon and potentially life-threatening disease. Scoring systems are essential for predicting outcome and evaluating the therapy effect of adult patients with acute myocarditis. The aim of this study was to determine the value of the Sequential Organ Failure Assessment (SOFA), Acute Physiology and Chronic Health Evaluation IV (APACHE IV) and second Simplified Acute Physiology Score (SAPS II) scoring systems in predicting short-term mortality of these patients. We retrospectively analyzed data from 305 adult patients suffering from acute myocarditis between April 2005 and August 2016. The association between the value of admission SOFA, APACHE IV and SAPS II scores and risk of short-term mortality was determined. Multivariate Cox analysis showed that SOFA, APACHE IV and SAPS II scores were independent risk factors of death in patients with acute myocarditis. For each scoring system, Kaplan-Meier analysis showed that the cumulative short-term mortality was significantly higher in patients with higher admission scores compared with those with lower admission scores. For the prediction of short-term mortality in a patient with acute myocarditis, SAPS II had the highest accuracy followed by the APACHE IV and SOFA scores.


Differentially expressed mRNAs, lncRNAs, and miRNAs with associated co-expression and ceRNA networks in ankylosing spondylitis.

  • Chen Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by systemic inflammation and pathological osteogenesis. However, the genetic etiology of AS remains largely unknown. This study aimed to explore the potential role of coding and noncoding genes in the genetic mechanism of AS. Using microarray analyses, this study comprehensively compared lncRNA, microRNA, and mRNA profiles in hip joint ligament tissues from patients with AS and controls. A total of 661 lncRNAs, 574 mRNAs, and 22 microRNAs were differentially expressed in patients with AS compared with controls. Twenty-two of these genes were then validated using real-time polymerase chain reaction. Gene ontology and pathway analyses were performed to explore the principal functions of differentially expressed genes. The pathways were involved mainly in immune regulation, intercellular signaling, osteogenic differentiation, protein synthesis, and degradation. Gene signal transduction network, coding-noncoding co-expression network, and competing endogenous RNA expression network were constructed using bioinformatics methods. Then, two miRNAs, miR-17-5p and miR-27b-3p, that could increase the osteogenic differentiation potentials of ligament fibroblasts were identified. Finally, differentially expressed, five lncRNAs, four miRNAs, and five mRNAs were validated using quantitative real-time polymerase chain reaction. These results suggested that mRNAs, lncRNAs, and microRNAs were involved in AS pathogenesis. The findings might help characterize the pathogenesis of AS and provide novel therapeutic targets for patients with AS in the future.


Relationship of p73 gene polymorphism and additional gene-smoking and gene-obesity interaction with non-small cell lung cancer risk.

  • Qiuge Wu‎ et al.
  • Oncotarget‎
  • 2017‎

The aim of this study was to investigate the impact of G4C14-to-A4T14 polymorphism within P73 gene and additional interactions with current smoking and obesity on non-small cell lung cancer (NSCLC) risk in a Chinese population.


Serum insulin-like growth factor-1 and its binding protein 3 as prognostic factors for the incidence, progression, and outcome of hepatocellular carcinoma: a systematic review and meta-analysis.

  • Jing Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Previous studies have supported an association between serum insulin-like growth factor-1 (IGF1) and IGF-binding protein 3 (IGFBP3) levels and hepatocellular carcinoma (HCC), but the results were inaccurate. It has recently been proposed that IGF1 and IGFBP3 play roles in the time-to-progression (TTP) and overall survival (OS) of HCC patients. Our results revealed that serum IGF1 level is predictive of the progression and survival of HCC patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: