Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 4,287 papers

Endogenous IL-6 of mesenchymal stem cell improves behavioral outcome of hypoxic-ischemic brain damage neonatal rats by supressing apoptosis in astrocyte.

  • Yan Gu‎ et al.
  • Scientific reports‎
  • 2016‎

Mesenchymal stem cell (MSC) transplantation reduces the neurological impairment caused by hypoxic-ischemic brain damage (HIBD) via immunomodulation. In the current study, we found that MSC transplantation improved learning and memory function and enhanced long-term potentiation in neonatal rats subjected to HIBD and the amount of IL-6 released from MSCs was far greater than that of other cytokines. However, the neuroprotective effect of MSCs infected with siIL-6-transduced recombinant lentivirus (siIL-6 MSCs) was significantly weakened in the behavioural tests and electrophysiological analysis. Meanwhile, the hippocampal IL-6 levels were decreased following siIL-6 MSC transplantation. In vitro, the levels of IL-6 release and the levels of IL-6R and STAT3 expression were increased in both primary neurons and astrocytes subjected to oxygen and glucose deprivation (OGD) following MSCs co-culture. The anti-apoptotic protein Bcl-2 was upregulated and the pro-apoptotic protein Bax was downregulated in OGD-injured astrocytes co-cultured with MSCs. However, the siIL-6 MSCs suppressed ratio of Bcl-2/Bax in the injured astrocytes and induced apoptosis number of the injured astrocytes. Taken together, these data suggest that the neuroprotective effect of MSC transplantation in neonatal HIBD rats is partly mediated by IL-6 to enhance anti-apoptosis of injured astrocytes via the IL-6/STAT3 signaling pathway.


Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer.

  • Juliet D French‎ et al.
  • Oncotarget‎
  • 2016‎

Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.


Genetic Evolution during the development of an attenuated EIAV vaccine.

  • Xue-Feng Wang‎ et al.
  • Retrovirology‎
  • 2016‎

The equine infectious anemia virus (EIAV) vaccine is the only attenuated lentiviral vaccine applied on a large scale that has been shown to be effective in controlling the prevalence of EIA in China. This vaccine was developed by successive passaging of a field-isolated virulent strain in different hosts and cultivated cells. To explore the molecular basis for the phenotype alteration of this vaccine strain, we systematically analyzed its genomic evolution during vaccine development.


Effect of SIRT1 Gene on Epithelial-Mesenchymal Transition of Human Prostate Cancer PC-3 Cells.

  • Ying Cui‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2016‎

BACKGROUND The epithelial-mesenchymal transition (EMT) has been shown to be involved in the process of invasion and metastasis of prostate cancer. SIRT1 is the mammalian homologue of the silent information regulator 2 (Sir2) gene, and is abnormally expressed in prostate cancer cells. Therefore, it is hypothesized that SIRT1 mediates the invasion/metastatic ability of prostate cancer via EMT regulation. This study thus investigated the effect of SIRT1 gene on the invasion and migration of prostate cancer cell line PC-3 via the small interference RNA (siRNA) against SIRT1. MATERIAL AND METHODS SiRNA construct was transfected into PC-3 cells, which were tested for the cell migration and invasion ability by scratch assay and Transwell migration assay, respectively. Expression levels of vimentin, E-cadherin, and N-cadherin were further quantified by Western blotting and RT-PCR. RESULTS Both mRNA and protein levels of SIRT1 were depressed after siRNA transfection, along with weakened migration and invasion ability of PC-3 cells. Elevated E-cadherin and suppressed N-cadherin and vimentin were observed in those transfected cells. CONCLUSIONS The silencing of SIRT1 gene in PC-3 cells can suppress the movement, migration, and invasion functions of prostate cancer cells, possibly via the down-regulation of mesenchymal markers vimentin and N-cadherin accompanied with up-regulation of epithelial marker N-cadherin, thus reversing the EMT process.


No apparent transmission of transgenic α-synuclein into nigrostriatal dopaminergic neurons in multiple mouse models.

  • Namratha Sastry‎ et al.
  • Translational neurodegeneration‎
  • 2015‎

α-synuclein (α-syn) is the main component of intracytoplasmic inclusions deposited in the brains of patients with Parkinson's disease (PD) and certain other neurodegenerative disorders. Recent studies have explored the ability of α-syn to propagate between or across neighboring neurons and supposedly "infect" them with a prion-like mechanism. However, much of this research has used stereotaxic injections of heterologous α-syn fibrils to induce the spreading of inclusions in the rodent brains. Whether α-syn is able to transmit from the host cells to their neighboring cells in vivo is unclear.


High-mobility group box 1 potentiates antineutrophil cytoplasmic antibody-inducing neutrophil extracellular traps formation.

  • Yun-Hua Ma‎ et al.
  • Arthritis research & therapy‎
  • 2016‎

Recent studies found that the circulating high-mobility group box 1 (HMGB1) levels could reflect the disease activity of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). HMGB1 could prime neutrophils by increasing ANCA antigens translocation for ANCA-mediated respiratory burst and degranulation. The current study aimed to investigate whether HMGB1 participates in ANCA-induced neutrophil extracellular traps (NETs) formation, which is one of the most important pathogenic aspects in the development of AAV.


House dust mite extract induces growth factor expression in nasal mucosa by activating the PI3K/Akt/HIF-1α pathway.

  • Xi Chen‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Growing evidence suggests that hypoxia-inducible factor-α (HIF-1α) plays an important role in the progression of allergic airway inflammation and remodeling. However, the biochemical mechanisms leading to the activation of HIF-1α and the effects of HIF-1α on the expression of growth factors, including vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), and fibroblast growth factor-2 (FGF-2), in allergic nasal inflammation are not clear. We examined the relationship between HIF-1α activation and production of VEGF, TGF-β1, and FGF-2 in primary cultured nasal epithelial cells (NECs) after stimulation with house dust mite (HDM) extract. Moreover, we evaluated the importance of phosphoinositide3-kinase(PI3K)/Akt signaling in HDM-induced production of these growth factors in vitro and in the nasal mucosa of a murine model of allergic rhinitis (AR). Our results indicate HDM extract induced the expression of VEGF, TGF-β1, and FGF-2 by activating the PI3K/Akt/HIF-1α pathway in human primary cultured NECs and in the nasal mucosa of a murine model. HIF-1α regulated the expression of VEGF, TGF-β1, and FGF-2 in the nasal mucosa through direct and indirect pathways, which suggested that targeting the HIF-1α pathway could be a novel therapeutic approach for reducing nasal airway inflammation and remodeling in AR.


mir-129-5p Attenuates Irradiation-Induced Autophagy and Decreases Radioresistance of Breast Cancer Cells by Targeting HMGB1.

  • Jing Luo‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2015‎

BACKGROUND This study aimed to determine the role of miR-129-5p in irradiation-induced autophagy in breast cancer cells and to investigate its downstream regulation in autophagy-related radiosensitivity. MATERIAL AND METHODS Relative miR-129-5p expression in breast cancer cell lines MCF-7, MDA-MB-231, BT474, and BT549, and in 1 non-tumorigenic breast epithelial cell line, MCF-10A, was compared. The effect of miR-129-5p on irradiation-induced autophagy and radiosensitivity of the cancer cells was explored. The regulative effect of miR-129-5p on HMGB1 and the functional role of this axis in autophagy and radiosensitivity were also studied. RESULTS Ectopic expression of miR-129-5p sensitized MDA-MD-231 cells to irradiation, while knockdown of miR-129-5p reduced radiosensitivity of MCF-7 cells. MiR-129-5p overexpression inhibited irradiation-induced autophagy. HMGB1 is a direct functional target of miR-129-5p in breast cancer cells. MiR-129-5p may suppress autophagy and decrease radioresistance of breast cancer cells by targeting HMGB1. CONCLUSIONS The miR-129-5p/HMGB1 axis can regulate irradiation-induced autophagy in breast cancer and might be an important pathway in regulating radiosensitivity of breast cancer cells.


A Haplotype of Two Novel Polymorphisms in δ-Sarcoglycan Gene Increases Risk of Dilated Cardiomyopathy in Mongoloid Population.

  • Jie Chen‎ et al.
  • PloS one‎
  • 2015‎

The role of genetic abnormality of δ-sarcoglycan (δ-SG) gene in dilated (DCM) and hypertrophied (HCM) cardiomyopathy patients is still unfolding. In this study we first defined the promoter region and then searched for polymorphisms/mutations among the promoter, 5'-untranslated region, and the encoding exons in δ-SG gene in 104 Chinese patients with DCM, 145 with HCM, and 790 normal controls. Two novel polymorphisms were found, an 11 base-pair (bp) deletion (c.-100~-110; -) in the promoter region and a missense polymorphism of A848G resulting in p.Q283R in the highly conserved C-terminus. The prevalence of homozygous genotype -/- of c.-100~-110 was slightly higher in DCM (14.42%) and HCM patients (14.48%), as compared with normal controls (11.01%). The prevalence of genotype of 848A/G was significantly higher in DCM (6.73%; OR = 9.43; p = 0.0002), but not in HCM patients (1.38%; OR = 1.37; p = 0.62), as compared with controls (0.76%). Haplotype -_G consisting c.-100~-110 and A848G was associated with increased risk of DCM (OR = 17.27; 95%CI = 3.19-93.56; p = 0.001) but not associated with HCM (OR = 1.90; 95%CI = 0.38-9.55; p = 0.44). Co-occurrence of the genotypes -/- of c.-100~-110 and 848A/G was found in 5 patients with DCM (4.81%; OR = 39.85; p = 0.0001), none of HCM patients, and only 1 of the controls (0.13%). Both polymorphisms were also found in the Japanese population, but not in the Africans and Caucasians. C.-100~-110 resulted in a decrease of δ-SG promoter activity to 64±3% of the control level (p<0.01). Both co-immunoprecipitation and in vitro protein pull-down assays demonstrated that δ-SG-283R interacts normally to β- and γ-SG, but significantly decreased localization of β/δ/γ-SG on the plasma membrane. In conclusion, haplotype -_G composed of c.-100~-110 and A848G confers higher susceptibility to DCM in the Mongoloid population.


Genetic Analyses of the Internal Transcribed Spacer Sequences Suggest Introgression and Duplication in the Medicinal Mushroom Agaricus subrufescens.

  • Jie Chen‎ et al.
  • PloS one‎
  • 2016‎

The internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene cluster is widely used in fungal taxonomy and phylogeographic studies. The medicinal and edible mushroom Agaricus subrufescens has a worldwide distribution with a high level of polymorphism in the ITS region. A previous analysis suggested notable ITS sequence heterogeneity within the wild French isolate CA487. The objective of this study was to investigate the pattern and potential mechanism of ITS sequence heterogeneity within this strain. Using PCR, cloning, and sequencing, we identified three types of ITS sequences, A, B, and C with a balanced distribution, which differed from each other at 13 polymorphic positions. The phylogenetic comparisons with samples from different continents revealed that the type C sequence was similar to those found in Oceanian and Asian specimens of A. subrufescens while types A and B sequences were close to those found in the Americas or in Europe. We further investigated the inheritance of these three ITS sequence types by analyzing their distribution among single-spore isolates from CA487. In this analysis, three co-dominant markers were used firstly to distinguish the homokaryotic offspring from the heterokaryotic offspring. The homokaryotic offspring were then analyzed for their ITS types. Our genetic analyses revealed that types A and B were two alleles segregating at one locus ITSI, while type C was not allelic with types A and B but was located at another unlinked locus ITSII. Furthermore, type C was present in only one of the two constitutive haploid nuclei (n) of the heterokaryotic (n+n) parent CA487. These data suggest that there was a relatively recent introduction of the type C sequence and a duplication of the ITS locus in this strain. Whether other genes were also transferred and duplicated and their impacts on genome structure and stability remain to be investigated.


Elevated Serum Uric Acid Is Associated with Greater Bone Mineral Density and Skeletal Muscle Mass in Middle-Aged and Older Adults.

  • Xiao-Wei Dong‎ et al.
  • PloS one‎
  • 2016‎

Previous studies have suggested a positive link between serum uric acid (UA) and bone mineral density (BMD). In this study, we re-examined the association between UA and BMD and further explored whether this was mediated by skeletal muscle mass in a general Chinese population.


ZSTK474, a specific class I phosphatidylinositol 3-kinase inhibitor, induces G1 arrest and autophagy in human breast cancer MCF-7 cells.

  • Yaochen Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Multifaceted activities of class I phosphatidylinositol 3-kinase (PI3K) inhibitor ZSTK474 were investigated on human breast cancer cell MCF-7. ZSTK474 inhibited proliferation of MCF-7 cells potently. Flow cytometric analysis indicated that ZSTK474 induced cell cycle arrest at G1 phase, but no obvious apoptosis occurred. Western blot analysis suggested that blockade of PI3K/Akt/GSK-3β/cyclin D1/p-Rb pathway might contribute to the G1 arrest induced. Moreover, we demonstrated that ZSTK474 induced autophagy in MCF-7 cells by use of various assays including monodansylcadaverine (MDC) staining, transmission electron microscopy (TEM), tandem mRFP-GFP-LC3 fluorescence microscopy, and western blot detection of the autophagy protein markers of LC3B II, p62 and Atg 5. Inhibition of class I PI3K and the downstream mTOR might be involved in the autophagy-inducing effect. Combinational use of ZSTK474 and autophagy inhibitors enhanced cell viability, suggesting ZSTK474-induced autophagy might contribute to the antitumor activity. Our report supports the application of ZSTK474, which is being evaluated in clinical trials, for breast cancer therapy.


Rac1b enhances cell survival through activation of the JNK2/c-JUN/Cyclin-D1 and AKT2/MCL1 pathways.

  • Gang Li‎ et al.
  • Oncotarget‎
  • 2016‎

Rac1b is a constitutively activated, alternatively spliced form of the small GTPase Rac1. Previous studies showed that Rac1b promotes cell proliferation and inhibits apoptosis. In the present study, we used microarray analysis to detect genes differentially expressed in HEK293T cells and SW480 human colon cancer cells stably overexpressing Rac1b. We found that the pro-proliferation genes JNK2, c-JUN and cyclin-D1 as well as anti-apoptotic AKT2 and MCL1 were all upregulated in both lines. Rac1b promoted cell proliferation and inhibited apoptosis by activating the JNK2/c-JUN/cyclin-D1 and AKT2/MCL1 pathways, respectively. Very low Rac1b levels were detected in the colonic epithelium of wild-type Sprague-Dawley rats. Knockout of the rat Rac1 gene exon-3b or knockdown of endogenous Rac1b in HT29 human colon cancer cells downregulated only the AKT2/MCL1 pathway. Our study revealed that very low levels of endogenous Rac1b inhibit apoptosis, while Rac1b upregulation both promotes cell proliferation and inhibits apoptosis. It is likely the AKT2/MCL1 pathway is more sensitive to Rac1b regulation.


MACC1 mediates acetylcholine-induced invasion and migration by human gastric cancer cells.

  • Ting Yang‎ et al.
  • Oncotarget‎
  • 2016‎

The neurotransmitter acetylcholine (ACh) promotes the growth and metastasis of several cancers via its M3 muscarinic receptor (M3R). Metastasis-associated in colon cancer-1 (MACC1) is an oncogene that is overexpressed in gastric cancer (GC) and plays an important role in GC progression, though it is unclear how MACC1 activity is regulated in GC. In this study, we demonstrated that ACh acts via M3Rs to promote GC cell invasion and migration as well as expression of several markers of epithelial-mesenchymal transition (EMT). The M3R antagonist darifenacin inhibited GC cell activity in both the presence and absence of exogenous ACh, suggesting GC cells secrete endogenous ACh, which then acts in an autocrine fashion to promote GC cell migration/invasion. ACh up-regulated MACC1 in GC cells, and MACC1 knockdown using siRNA attenuated the effects of ACh on GC cells. AMP-activated protein kinase (AMPK) served as an intermediate signal between ACh and MACC1. These findings suggest that ACh acts via a M3R/AMPK/MACC1 signaling pathway to promote GC cell invasion/migration, which provides insight into the mechanisms underlying GC growth and metastasis and may shed light on new targets for GC treatment.


Decreased Bone Mineral Density Is an Independent Predictor for the Development of Atherosclerosis: A Systematic Review and Meta-Analysis.

  • Chenyi Ye‎ et al.
  • PloS one‎
  • 2016‎

There is conflicting evidence regarding the association between decreased bone mineral density (BMD) and atherosclerosis. To this end, we performed a systematic review and meta-analysis to clarify the association.


The role of GPR1 signaling in mice corpus luteum.

  • Ya-Li Yang‎ et al.
  • The Journal of endocrinology‎
  • 2016‎

Chemerin, a chemokine, plays important roles in immune responses, inflammation, adipogenesis, and carbohydrate metabolism. Our recent research has shown that chemerin has an inhibitory effect on hormone secretion from the testis and ovary. However, whether G protein-coupled receptor 1 (GPR1), the active receptor for chemerin, regulates steroidogenesis and luteolysis in the corpus luteum is still unknown. In this study, we established a pregnant mare serum gonadotropin-human chorionic gonadotropin (PMSG-hCG) superovulation model, a prostaglandin F2α (PGF2α) luteolysis model, and follicle and corpus luteum culture models to analyze the role of chemerin signaling through GPR1 in the synthesis and secretion of gonadal hormones during follicular/luteal development and luteolysis. Our results, for the first time, show that chemerin and GPR1 are both differentially expressed in the ovary over the course of the estrous cycle, with highest levels in estrus and metestrus. GPR1 has been localized to granulosa cells, cumulus cells, and the corpus luteum by immunohistochemistry (IHC). In vitro, we found that chemerin suppresses hCG-induced progesterone production in cultured follicle and corpus luteum and that this effect is attenuated significantly by anti-GPR1 MAB treatment. Furthermore, when the phosphoinositide 3-kinase (PI3K) pathway was blocked, the attenuating effect of GPR1 MAB was abrogated. Interestingly, PGF2α induces luteolysis through activation of caspase-3, leading to a reduction in progesterone secretion. Treatment with GPR1 MAB blocked the PGF2α effect on caspase-3 expression and progesterone secretion. This study indicates that chemerin/GPR1 signaling directly or indirectly regulates progesterone synthesis and secretion during the processes of follicular development, corpus luteum formation, and PGF2α-induced luteolysis.


Effect of Candida albicans on Intestinal Ischemia-reperfusion Injury in Rats.

  • Lei Yan‎ et al.
  • Chinese medical journal‎
  • 2016‎

Inflammation is supposed to play a key role in the pathophysiological processes of intestinal ischemia-reperfusion injury (IIRI), and Candida albicans in human gut commonly elevates inflammatory cytokines in intestinal mucosa. This study aimed to explore the effect of C. albicans on IIRI.


Role of high expression levels of STK39 in the growth, migration and invasion of non-small cell type lung cancer cells.

  • Zhao Li‎ et al.
  • Oncotarget‎
  • 2016‎

Non-small cell type lung cancer (NSCLC) is the most common malignancy and the leading cause of cancer related mortality. In this study, serine/threonine kinase 39 (STK39) was identified as an up-regulated gene in NSCLC tissues by next-generation RNA sequencing. Although STK39 gene polymorphisms may be prognostic of overall survival in patients with early stage NSCLC, the roles of STK39 in NSCLC cancer are poorly understood. In the current study, Genome Set Enrichment Analysis (GSEA) on the RNA-seq data of NSCLC specimens indicated that cancer-related process and pathways, including metastasis, cell cycle, apoptosis and p38 pathway, were significantly correlated with STK39 expression. STK39 expression was significantly increased in NSCLC cases and its protein expression was positively correlated with the poor tumor stage, large tumor size, advanced lymphnode metastasis and poor prognosis. Down-regulation of STK39 in NSCLC cells significantly decreased cell proliferation by blocking of cell cycle and inducing apoptosis. We also found that STK39 knockdown in NSCLC cells remarkably repressed cell migration and invasion. On the contrary, overexpression of STK39 in NSCLC cells had inverse effects on cell behaviors. Taken together, STK39 acts as a tumor oncogene in NSCLC and can be a potential biomarker of carcinogenesis.


Forkhead containing transcription factor Albino controls tetrapyrrole-based body pigmentation in planarian.

  • Chen Wang‎ et al.
  • Cell discovery‎
  • 2016‎

Pigmentation processes occur from invertebrates to mammals. Owing to the complexity of the pigmentary system, in vivo animal models for pigmentation study are limited. Planarians are capable of regenerating any missing part including the dark-brown pigments, providing a promising model for pigmentation study. However, the molecular mechanism of planarian body pigmentation is poorly understood. We found in an RNA interference screen that a forkhead containing transcription factor, Albino, was required for pigmentation without affecting survival or other regeneration processes. In addition, the body color recovered after termination of Albino double stranded RNA feeding owing to the robust stem cell system. Further expression analysis revealed a spatial and temporal correlation between Albino and pigmentation process. Gene expression arrays revealed that the expression of three tetrapyrrole biosynthesis enzymes, ALAD, ALAS and PBGD, was impaired upon Albino RNA interference. RNA interference of PBGD led to a similar albinism phenotype caused by Albino RNA interference. Moreover, PBGD was specifically expressed in pigment cells and can serve as a pigment cell molecular marker. Our results revealed that Albino controls planarian body color pigmentation dominantly via regulating tetrapyrrole biogenesis. These results identified Albino as the key regulator of the tetrapyrrole-based planarian body pigmentation, suggesting a role of Albino during stem cell-pigment cell fate decision and provided new insights into porphyria pathogenesis.


Feasibility of urinary microRNA profiling detection in intrahepatic cholestasis of pregnancy and its potential as a non-invasive biomarker.

  • Li Ma‎ et al.
  • Scientific reports‎
  • 2016‎

Intrahepatic cholestasis of pregnancy (ICP), a pregnancy-related liver disease, leads to complications for both mother and fetus. Circulating microRNAs (miRNAs) have emerged as candidate biomarkers for many diseases. So far, the circulating miRNAs profiling of ICP has not been investigated. To assess the urinary miRNAs as non-invasive biomarkers for ICP, a differential miRNA profiling was initially analyzed by individual quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay in urinary samples from a screening set including 10 ICP and 10 healthy pregnancies. The selected candidate miRNAs were then validated by a validation set with 40 ICP and 50 healthy pregnancies using individual qRT-PCR assay. Compared with the expression in urine of healthy pregnant women, the expression levels of hsa-miR-151-3p and hsa-miR-300 were significantly down-regulated, whereas hsa-miR-671-3p and hsa-miR-369-5p were significantly up-regulated in urine from ICP patients (p < 0.05 and false discovery rate < 0.05). A binary logistic regression model was constructed using the four miRNAs. The area under the receiver operating characteristic curve was 0.913 (95% confidence interval = 0.847 to 0.980; sensitivity = 82.9%, specificity = 87.0%). Therefore, urinary microRNA profiling detection in ICP is feasible and maternal urinary miRNAs have the potential to be non-invasive biomarkers for the diagnosis of ICP.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: