Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 339 papers

Emerging roles of ARHGAP33 in intracellular trafficking of TrkB and pathophysiology of neuropsychiatric disorders.

  • Takanobu Nakazawa‎ et al.
  • Nature communications‎
  • 2016‎

Intracellular trafficking of receptor proteins is essential for neurons to detect various extracellular factors during the formation and refinement of neural circuits. However, the precise mechanisms underlying the trafficking of neurotrophin receptors to synapses remain elusive. Here, we demonstrate that a brain-enriched sorting nexin, ARHGAP33, is a new type of regulator for the intracellular trafficking of TrkB, a high-affinity receptor for brain-derived neurotrophic factor. ARHGAP33 knockout (KO) mice exhibit reduced expression of synaptic TrkB, impaired spine development and neuropsychiatric disorder-related behavioural abnormalities. These deficits are rescued by specific pharmacological enhancement of TrkB signalling in ARHGAP33 KO mice. Mechanistically, ARHGAP33 interacts with SORT1 to cooperatively regulate TrkB trafficking. Human ARHGAP33 is associated with brain phenotypes and reduced SORT1 expression is found in patients with schizophrenia. We propose that ARHGAP33/SORT1-mediated TrkB trafficking is essential for synapse development and that the dysfunction of this mechanism may be a new molecular pathology of neuropsychiatric disorders.


Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal In Vivo.

  • Taku Nagai‎ et al.
  • Neuron‎
  • 2016‎

Dopamine (DA) type 1 receptor (D1R) signaling in the striatum presumably regulates neuronal excitability and reward-related behaviors through PKA. However, whether and how D1Rs and PKA regulate neuronal excitability and behavior remain largely unknown. Here, we developed a phosphoproteomic analysis method to identify known and novel PKA substrates downstream of the D1R and obtained more than 100 candidate substrates, including Rap1 GEF (Rasgrp2). We found that PKA phosphorylation of Rasgrp2 activated its guanine nucleotide-exchange activity on Rap1. Cocaine exposure activated Rap1 in the nucleus accumbens in mice. The expression of constitutively active PKA or Rap1 in accumbal D1R-expressing medium spiny neurons (D1R-MSNs) enhanced neuronal firing rates and behavioral responses to cocaine exposure through MAPK. Knockout of Rap1 in the accumbal D1R-MSNs was sufficient to decrease these phenotypes. These findings demonstrate a novel DA-PKA-Rap1-MAPK intracellular signaling mechanism in D1R-MSNs that increases neuronal excitability to enhance reward-related behaviors.


Strictly co-isogenic C57BL/6J-Prnp-/- mice: A rigorous resource for prion science.

  • Mario Nuvolone‎ et al.
  • The Journal of experimental medicine‎
  • 2016‎

Although its involvement in prion replication and neurotoxicity during transmissible spongiform encephalopathies is undisputed, the physiological role of the cellular prion protein (PrP(C)) remains enigmatic. A plethora of functions have been ascribed to PrP(C) based on phenotypes of Prnp(-/-) mice. However, all currently available Prnp(-/-) lines were generated in embryonic stem cells from the 129 strain of the laboratory mouse and mostly crossed to non-129 strains. Therefore, Prnp-linked loci polymorphic between 129 and the backcrossing strain resulted in systematic genetic confounders and led to erroneous conclusions. We used TALEN-mediated genome editing in fertilized mouse oocytes to create the Zurich-3 (ZH3) Prnp-ablated allele on a pure C57BL/6J genetic background. Genomic, transcriptional, and phenotypic characterization of Prnp(ZH3/ZH3) mice failed to identify phenotypes previously described in non-co-isogenic Prnp(-/-) mice. However, aged Prnp(ZH3/ZH3) mice developed a chronic demyelinating peripheral neuropathy, confirming the crucial involvement of PrP(C) in peripheral myelin maintenance. This new line represents a rigorous genetic resource for studying the role of PrP(C) in physiology and disease.


Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn.

  • Thomas C P Sardella‎ et al.
  • Molecular pain‎
  • 2011‎

The opioid peptide dynorphin is expressed by certain neurons in the superficial dorsal horn of the spinal cord, but little is known about the types of cell that contain dynorphin. In this study, we have used an antibody against the dynorphin precursor preprodynorphin (PPD), to reveal the cell bodies and axons of dynorphin-expressing neurons in the rat spinal cord. The main aims were to estimate the proportion of neurons in each of laminae I-III that express dynorphin and to determine whether they are excitatory or inhibitory neurons.


Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids.

  • Gonzalo E Yévenes‎ et al.
  • PloS one‎
  • 2011‎

Glycine receptors (GlyRs) are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs) have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA) are positive modulators of α(1), α(2) and α(3) GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly) potentiate α(1) GlyRs but inhibit α(2) and α(3). This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM) region 2 and intracellular lysine 385 determine the positive modulation of α(1) GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α(2) converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α(1) GlyRs, without affecting inhibition of α(2) and α(3). Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.


Phase II randomized, controlled trial of 1 day versus 3 days of dexamethasone combined with palonosetron and aprepitant to prevent nausea and vomiting in Japanese breast cancer patients receiving anthracycline-based chemotherapy.

  • Yoshimasa Kosaka‎ et al.
  • Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer‎
  • 2016‎

Dexamethasone, plus a 5-HT3 receptor antagonist and an NK-1 receptor antagonist are recommended for controlling the chemotherapy-induced nausea and vomiting (CINV) of highly emetogenic chemotherapy. Several days of dexamethasone are effective for CINV; however, dexamethasone also has side effects. The purpose of this trial was to investigate whether the use of a second-generation 5-HT3 receptor antagonist and an NK-1 receptor antagonist could allow a reduced dose of dexamethasone for breast cancer patients receiving highly emetogenic chemotherapy.


Exclusive Association of p53 Mutation with Super-High Methylation of Tumor Suppressor Genes in the p53 Pathway in a Unique Gastric Cancer Phenotype.

  • Mina Waraya‎ et al.
  • PloS one‎
  • 2015‎

A comprehensive search for DNA methylated genes identified candidate tumor suppressor genes that have been proven to be involved in the apoptotic process of the p53 pathway. In this study, we investigated p53 mutation in relation to such epigenetic alteration in primary gastric cancer.


The Cytokine GM-CSF Drives the Inflammatory Signature of CCR2+ Monocytes and Licenses Autoimmunity.

  • Andrew L Croxford‎ et al.
  • Immunity‎
  • 2015‎

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has emerged as a crucial cytokine produced by auto-reactive T helper (Th) cells that initiate tissue inflammation. Multiple cell types can sense GM-CSF, but the identity of the pathogenic GM-CSF-responsive cells is unclear. By using conditional gene targeting, we systematically deleted the GM-CSF receptor (Csf2rb) in specific subpopulations throughout the myeloid lineages. Experimental autoimmune encephalomyelitis (EAE) progressed normally when either classical dendritic cells (cDCs) or neutrophils lacked GM-CSF responsiveness. The development of tissue-invading monocyte-derived dendritic cells (moDCs) was also unperturbed upon Csf2rb deletion. Instead, deletion of Csf2rb in CCR2(+)Ly6C(hi) monocytes phenocopied the EAE resistance seen in complete Csf2rb-deficient mice. High-dimensional analysis of tissue-infiltrating moDCs revealed that GM-CSF initiates a combination of inflammatory mechanisms. These results indicate that GM-CSF signaling controls a pathogenic expression signature in CCR2(+)Ly6C(hi) monocytes and their progeny, which was essential for tissue damage.


Analgesia and unwanted benzodiazepine effects in point-mutated mice expressing only one benzodiazepine-sensitive GABAA receptor subtype.

  • William T Ralvenius‎ et al.
  • Nature communications‎
  • 2015‎

Agonists at the benzodiazepine-binding site of GABAA receptors (BDZs) enhance synaptic inhibition through four subtypes (α1, α2, α3 and α5) of GABAA receptors (GABAAR). When applied to the spinal cord, they alleviate pathological pain; however, insufficient efficacy after systemic administration and undesired effects preclude their use in routine pain therapy. Previous work suggested that subtype-selective drugs might allow separating desired antihyperalgesia from unwanted effects, but the lack of selective agents has hitherto prevented systematic analyses. Here we use four lines of triple GABAAR point-mutated mice, which express only one benzodiazepine-sensitive GABAAR subtype at a time, to show that targeting only α2GABAARs achieves strong antihyperalgesia and reduced side effects (that is, no sedation, motor impairment and tolerance development). Additional pharmacokinetic and pharmacodynamic analyses in these mice explain why clinically relevant antihyperalgesia cannot be achieved with nonselective BDZs. These findings should foster the development of innovative subtype-selective BDZs for novel indications such as chronic pain.


Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch.

  • Edmund Foster‎ et al.
  • Neuron‎
  • 2015‎

The gate control theory of pain proposes that inhibitory neurons of the spinal dorsal horn exert critical control over the relay of nociceptive signals to higher brain areas. Here we investigated how the glycinergic subpopulation of these neurons contributes to modality-specific pain and itch processing. We generated a GlyT2::Cre transgenic mouse line suitable for virus-mediated retrograde tracing studies and for spatially precise ablation, silencing, and activation of glycinergic neurons. We found that these neurons receive sensory input mainly from myelinated primary sensory neurons and that their local toxin-mediated ablation or silencing induces localized mechanical, heat, and cold hyperalgesia; spontaneous flinching behavior; and excessive licking and biting directed toward the corresponding skin territory. Conversely, local pharmacogenetic activation of the same neurons alleviated neuropathic hyperalgesia and chloroquine- and histamine-induced itch. These results establish glycinergic neurons of the spinal dorsal horn as key elements of an inhibitory pain and itch control circuit.


Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum.

  • Wataru Kakegawa‎ et al.
  • Neuron‎
  • 2015‎

Neuronal networks are dynamically modified by selective synapse pruning during development and adulthood. However, how certain connections win the competition with others and are subsequently maintained is not fully understood. Here, we show that C1ql1, a member of the C1q family of proteins, is provided by climbing fibers (CFs) and serves as a crucial anterograde signal to determine and maintain the single-winner CF in the mouse cerebellum throughout development and adulthood. C1ql1 specifically binds to the brain-specific angiogenesis inhibitor 3 (Bai3), which is a member of the cell-adhesion G-protein-coupled receptor family and expressed on postsynaptic Purkinje cells. C1ql1-Bai3 signaling is required for motor learning but not for gross motor performance or coordination. Because related family members of C1ql1 and Bai3 are expressed in various brain regions, the mechanism described here likely applies to synapse formation, maintenance, and function in multiple neuronal circuits essential for important brain functions.


Expression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn.

  • Maria Gutierrez-Mecinas‎ et al.
  • Molecular pain‎
  • 2014‎

Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter.


Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay.

  • Hiroyuki Takeda‎ et al.
  • Scientific reports‎
  • 2015‎

G-protein-coupled receptors (GPCRs) are one of the most important drug targets, and anti-GPCR monoclonal antibody (mAb) is an essential tool for functional analysis of GPCRs. However, it is very difficult to develop GPCR-specific mAbs due to difficulties in production of recombinant GPCR antigens, and lack of efficient mAb screening method. Here we describe a novel approach for the production of mAbs against GPCR using two original methods, bilayer-dialysis method and biotinylated liposome-based interaction assay (BiLIA), both of which are developed using wheat cell-free protein synthesis system and liposome technology. Using bilayer-dialysis method, various GPCRs were successfully synthesized with quality and quantity sufficient for immunization. For selection of specific mAb, we designed BiLIA that detects interaction between antibody and membrane protein on liposome. BiLIA prevented denaturation of GPCR, and then preferably selected conformation-sensitive antibodies. Using this approach, we successfully obtained mAbs against DRD1, GHSR, PTGER1 and T1R1. With respect to DRD1 mAb, 36 mouse mAbs and 6 rabbit mAbs were obtained which specifically recognized native DRD1 with high affinity. Among them, half of the mAbs were conformation-sensitive mAb, and two mAbs recognized extracellular loop 2 of DRD1. These results indicated that this approach is useful for GPCR mAb production.


Expression of cholecystokinin by neurons in mouse spinal dorsal horn.

  • Maria Gutierrez-Mecinas‎ et al.
  • The Journal of comparative neurology‎
  • 2019‎

Excitatory interneurons account for the majority of dorsal horn neurons, and are required for perception of normal and pathological pain. We have identified largely non-overlapping populations in laminae I-III, based on expression of substance P, gastrin-releasing peptide, neurokinin B, and neurotensin. Cholecystokinin (CCK) is expressed by many dorsal horn neurons, particularly in the deeper laminae. Here, we have used immunocytochemistry and in situ hybridization to characterize the CCK cells. We show that they account for ~7% of excitatory neurons in laminae I-II, but between a third and a quarter of those in lamina III. They are largely separate from the neurokinin B, neurotensin, and gastrin-releasing peptide populations, but show limited overlap with the substance P cells. Laminae II-III neurons with protein kinase Cγ (PKCγ) have been implicated in mechanical allodynia following nerve injury, and we found that around 50% of CCK cells were PKCγ-immunoreactive. Neurotensin is also expressed by PKCγ cells, and among neurons with moderate to high levels of PKCγ, ~85% expressed CCK or neurotensin. A recent transcriptomic study identified mRNA for thyrotropin-releasing hormone in a specific subpopulation of CCK neurons, and we show that these account for half of the CCK/PKCγ cells. These findings indicate that the CCK cells are distinct from other excitatory interneuron populations that we have defined. They also show that PKCγ cells can be assigned to different classes based on neuropeptide expression, and it will be important to determine the differential contribution of these classes to neuropathic allodynia.


Structural insights into modulation and selectivity of transsynaptic neurexin-LRRTM interaction.

  • Atsushi Yamagata‎ et al.
  • Nature communications‎
  • 2018‎

Leucine-rich repeat transmembrane neuronal proteins (LRRTMs) function as postsynaptic organizers that induce excitatory synapses. Neurexins (Nrxns) and heparan sulfate proteoglycans have been identified as presynaptic ligands for LRRTMs. Specifically, LRRTM1 and LRRTM2 bind to the Nrxn splice variant lacking an insert at the splice site 4 (S4). Here, we report the crystal structure of the Nrxn1β-LRRTM2 complex at 3.4 Å resolution. The Nrxn1β-LRRTM2 interface involves Ca2+-mediated interactions and overlaps with the Nrxn-neuroligin interface. Together with structure-based mutational analyses at the molecular and cellular levels, the present structural analysis unveils the mechanism of selective binding between Nrxn and LRRTM1/2 and its modulation by the S4 insertion of Nrxn.


Cartilage repair and inhibition of the progression of cartilage degeneration after transplantation of allogeneic chondrocyte sheets in a nontraumatic early arthritis model.

  • Naoki Takatori‎ et al.
  • Regenerative therapy‎
  • 2018‎

Using a rat model of nontraumatic early arthritis induced by intra-articular administration of low-dose monoiodoacetic acid (MIA), we transplanted allogeneic chondrocyte sheets and examined the effects on tissue repair.


Differences in glutamate uptake between cortical regions impact neuronal NMDA receptor activation.

  • Jennifer Romanos‎ et al.
  • Communications biology‎
  • 2019‎

Removal of synaptically-released glutamate by astrocytes is necessary to spatially and temporally limit neuronal activation. Recent evidence suggests that astrocytes may have specialized functions in specific circuits, but the extent and significance of such specialization are unclear. By performing direct patch-clamp recordings and two-photon glutamate imaging, we report that in the somatosensory cortex, glutamate uptake by astrocytes is slower during sustained synaptic stimulation when compared to lower stimulation frequencies. Conversely, glutamate uptake capacity is increased in the frontal cortex during higher frequency synaptic stimulation, thereby limiting extracellular buildup of glutamate and NMDA receptor activation in layer 5 pyramidal neurons. This efficient glutamate clearance relies on Na+/K+-ATPase function and both GLT-1 and non-GLT-1 transporters. Thus, by enhancing their glutamate uptake capacity, astrocytes in the frontal cortex may prevent excessive neuronal excitation during intense synaptic activity. These results may explain why diseases associated with network hyperexcitability differentially affect individual brain areas.


Ectopic positioning of Bergmann glia and impaired cerebellar wiring in Mlc1-over-expressing mice.

  • Saori Kikuchihara‎ et al.
  • Journal of neurochemistry‎
  • 2018‎

Mlc1 is a causative gene for megalencephalic leukoencephalopathy with subcortical cysts, and is expressed in astrocytes. Mlc1-over-expressing mice represent an animal model of early-onset leukoencephalopathy, which manifests as astrocytic swelling followed by myelin membrane splitting in the white matter. It has been previously reported that Mlc1 is highly expressed in Bergmann glia, while the cerebellar phenotypes of Mlc1-over-expressing mouse have not been characterized. Here, we examined the cerebellum of Mlc1-over-expressing mouse and found that the distribution of Bergmann glia (BG) was normally compacted along the Purkinje cell (PC) layer until postnatal day 10 (P10), while most BG were dispersed throughout the molecular layer by P28. Ectopic BG were poorly wrapped around somatodendritic elements of PCs and exhibited reduced expression of the glutamate transporter glutamate-aspartate transporter. Extraordinarily slow and small climbing fiber (CF)-mediated excitatory post-synaptic currents, which are known to be elicited under accelerated glutamate spillover, emerged at P20-P28 when BG ectopia was severe, but not at P9-P12 when ectopia was mild. Furthermore, maturation of CF wiring, which translocates the site of innervation from somata to proximal dendrites, was also impaired. Manipulations that restricted the Mlc1-over-expressing period successfully generated mice with and without BG ectopia, depending on the over-expressing period. Together, these findings suggest that there is a critical time window for mechanisms that promote the positioning of BG in the PC layer. Once normal positioning of BG is affected, the differentiation of BG is impaired, leading to insufficient glial wrapping, exacerbated glutamate spillover, and aberrant synaptic wiring in PCs. Open Practices Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Cover Image for this issue: doi: 10.1111/jnc.14199.


QRFP-Deficient Mice Are Hypophagic, Lean, Hypoactive and Exhibit Increased Anxiety-Like Behavior.

  • Kitaro Okamoto‎ et al.
  • PloS one‎
  • 2016‎

How the hypothalamus transmits hunger information to other brain regions to govern whole brain function to orchestrate feeding behavior has remained largely unknown. Our present study suggests the importance of a recently found lateral hypothalamic neuropeptide, QRFP, in this signaling. Qrfp-/- mice were hypophagic and lean, and exhibited increased anxiety-like behavior, and were hypoactive in novel circumstances as compared with wild type littermates. They also showed decreased wakefulness time in the early hours of the dark period. Histological studies suggested that QRFP neurons receive rich innervations from neurons in the arcuate nucleus which is a primary region for sensing the body's metabolic state by detecting levels of leptin, ghrelin and glucose. These observations suggest that QRFP is an important mediator that acts as a downstream mediator of the arcuate nucleus and regulates feeding behavior, mood, wakefulness and activity.


Foxa1 is essential for development and functional integrity of the subthalamic nucleus.

  • Emanuel Gasser‎ et al.
  • Scientific reports‎
  • 2016‎

Inactivation of transcription factor Foxa1 in mice results in neonatal mortality of unknown cause. Here, we report that ablation of Foxa1 causes impaired development and loss of the subthalamic nucleus (STN). Functional deficits in the STN have been implicated in the etiology of Huntington's and Parkinson's disease. We show that neuronal ablation by Synapsin1-Cre-mediated Foxa1 deletion is sufficient to induce hyperlocomotion in mice. Transcriptome profiling of STN neurons in conditional Foxa1 knockout mice revealed changes in gene expression reminiscent of those in neurodegenerative diseases. We identified Ppargc1a, a transcriptional co-activator that is implicated in neurodegeneration, as a Foxa1 target. These findings were substantiated by the observation of Foxa1-dependent demise of STN neurons in conditional models of Foxa1 mutant mice. Finally, we show that the spontaneous firing activity of Foxa1-deficient STN neurons is profoundly impaired. Our data reveal so far elusive roles of Foxa1 in the development and maintenance of STN function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: