Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 81 papers

Orbitofrontal cortex mediates the differential impact of signaled-reward probability on discrimination accuracy.

  • Ryan D Ward‎ et al.
  • Frontiers in neuroscience‎
  • 2015‎

Orbitofrontal cortex (OFC) function is critical to decision making and behavior based on the value of expected outcomes. While some of the roles the OFC plays in value computations and behavior have been identified, the role of the OFC in modulating cognitive resources based on reward expectancy has not been explored. Here we assessed the involvement of OFC in the interaction between motivation and attention. We tested mice in a sustained-attention task in which explicitly signaling the probability of reward differentially modulates discrimination accuracy. Using pharmacogenetic methods, we generated mice in which neuronal activity in the OFC could be transiently and reversibly inhibited during performance of our signaled-probability task. We found that inhibiting OFC neuronal activity abolished the ability of reward-associated cues to differentially impact accuracy of sustained-attention performance. This failure to modulate attention occurred despite evidence that mice still processed the differential value of the reward-associated cues. These data indicate that OFC function is critical for the ability of a reward-related signal to impact other cognitive and decision-making processes and begin to delineate the neural circuitry involved in the interaction between motivation and attention.


Reply to 'Antipsychotics with similar association kinetics at dopamine D2 receptors differ in extrapyramidal side-effects'.

  • David A Sykes‎ et al.
  • Nature communications‎
  • 2018‎

No abstract available


Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation.

  • Prashant Donthamsetti‎ et al.
  • Molecular psychiatry‎
  • 2020‎

The dopamine (DA) D2 receptor (D2R) is an important target for the treatment of neuropsychiatric disorders such as schizophrenia and Parkinson's disease. However, the development of improved therapeutic strategies has been hampered by our incomplete understanding of this receptor's downstream signaling processes in vivo and how these relate to the desired and undesired effects of drugs. D2R is a G protein-coupled receptor (GPCR) that activates G protein-dependent as well as non-canonical arrestin-dependent signaling pathways. Whether these effector pathways act alone or in concert to facilitate specific D2R-dependent behaviors is unclear. Here, we report on the development of a D2R mutant that recruits arrestin but is devoid of G protein activity. When expressed virally in "indirect pathway" medium spiny neurons (iMSNs) in the ventral striatum of D2R knockout mice, this mutant restored basal locomotor activity and cocaine-induced locomotor activity in a manner indistinguishable from wild-type D2R, indicating that arrestin recruitment can drive locomotion in the absence of D2R-mediated G protein signaling. In contrast, incentive motivation was enhanced only by wild-type D2R, signifying a dissociation in the mechanisms that underlie distinct D2R-dependent behaviors, and opening the door to more targeted therapeutics.


A new mechanism of allostery in a G protein-coupled receptor dimer.

  • J Robert Lane‎ et al.
  • Nature chemical biology‎
  • 2014‎

SB269652 is to our knowledge the first drug-like allosteric modulator of the dopamine D2 receptor (D2R), but it contains structural features associated with orthosteric D2R antagonists. Using a functional complementation system to control the identity of individual protomers within a dimeric D2R complex, we converted the pharmacology of the interaction between SB269652 and dopamine from allosteric to competitive by impairing ligand binding to one of the protomers, indicating that the allostery requires D2R dimers. Additional experiments identified a 'bitopic' pose for SB269652 extending from the orthosteric site into a secondary pocket at the extracellular end of the transmembrane (TM) domain, involving TM2 and TM7. Engagement of this secondary pocket was a requirement for the allosteric pharmacology of SB269652. This suggests a new mechanism whereby a bitopic ligand binds in an extended pose on one G protein-coupled receptor protomer to allosterically modulate the binding of a ligand to the orthosteric site of a second protomer.


Two allelic isoforms of the serotonin transporter from Schistosoma mansoni display electrogenic transport and high selectivity for serotonin.

  • Andréia C K Fontana‎ et al.
  • European journal of pharmacology‎
  • 2009‎

The human blood fluke Schistosoma mansoni is the primary cause of schistosomiasis, a debilitating disease that affects 200 million individuals in over 70 countries. The biogenic amine serotonin is essential for the survival of the parasite and serotonergic proteins are potential novel drug targets for treating schistosomiasis. Here we characterize two novel serotonin transporter gene transcripts, SmSERT-A and SmSERT-B, from S.mansoni. Southern blot analysis shows that the two mRNAs are the products of different alleles of a single SmSERT gene locus. The two SmSERT forms differ in three amino acid positions near the N-terminus of the protein. Both SmSERTs are expressed in the adult form and in the sporocyst form (infected snails) of the parasite, but are absent from all other stages of the parasite's complex life cycle. Heterologous expression of the two cDNAs in mammalian cells resulted in saturable, sodium-dependent serotonin transport activity with an apparent affinity for serotonin comparable to that of the human serotonin transporter. Although the two SmSERTs are pharmacologically indistinguishable from each other, efflux experiments reveal notably higher substrate selectivity for serotonin compared with their mammalian counterparts. Several well-established substrates for human SERT including (+/-)MDMA, S-(+)amphetamine, RU 24969, and m-CPP are not transported by SmSERTs, underscoring the higher selectivity of the schistosomal isoforms. Voltage-clamp recordings of SmSERT substrate-elicited currents confirm the substrate selectivity observed in efflux experiments and suggest that it may be possible to exploit the electrogenic nature of SmSERT to screen for compounds that target the parasite in vivo.


Single-molecule dynamics of gating in a neurotransmitter transporter homologue.

  • Yongfang Zhao‎ et al.
  • Nature‎
  • 2010‎

Neurotransmitter:Na(+) symporters (NSS) remove neurotransmitters from the synapse in a reuptake process that is driven by the Na(+) gradient. Drugs that interfere with this reuptake mechanism, such as cocaine and antidepressants, profoundly influence behaviour and mood. To probe the nature of the conformational changes that are associated with substrate binding and transport, we have developed a single-molecule fluorescence imaging assay and combined it with functional and computational studies of the prokaryotic NSS homologue LeuT. Here we show molecular details of the modulation of intracellular gating of LeuT by substrates and inhibitors, as well as by mutations that alter binding, transport or both. Our direct observations of single-molecule transitions, reflecting structural dynamics of the intracellular region of the transporter that might be masked by ensemble averaging or suppressed under crystallographic conditions, are interpreted in the context of an allosteric mechanism that couples ion and substrate binding to transport.


A partially-open inward-facing intermediate conformation of LeuT is associated with Na+ release and substrate transport.

  • Daniel S Terry‎ et al.
  • Nature communications‎
  • 2018‎

Neurotransmitter:sodium symporters (NSS), targets of antidepressants and psychostimulants, clear neurotransmitters from the synaptic cleft through sodium (Na+)-coupled transport. Substrate and Na+ are thought to be transported from the extracellular to intracellular space through an alternating access mechanism by coordinated conformational rearrangements in the symporter that alternately expose the binding sites to each side of the membrane. However, the mechanism by which the binding of ligands coordinates conformational changes occurring on opposite sides of the membrane is not well understood. Here, we report the use of single-molecule fluorescence resonance energy transfer (smFRET) techniques to image transitions between distinct conformational states on both the extracellular and intracellular sides of the prokaryotic NSS LeuT, including partially open intermediates associated with transport activity. The nature and functional context of these hitherto unidentified intermediate states shed new light on the allosteric mechanism that couples substrate and Na+ symport by the NSS family through conformational dynamics.


Regional Heterogeneity of D2-Receptor Signaling in the Dorsal Striatum and Nucleus Accumbens.

  • Pamela F Marcott‎ et al.
  • Neuron‎
  • 2018‎

Dopamine input to the dorsal and ventral striatum originates from separate populations of midbrain neurons. Despite differences in afferent inputs and behavioral output, little is known about how dopamine release is encoded by dopamine receptors on medium spiny neurons (MSNs) across striatal subregions. Here we examined the activation of D2 receptors following the synaptic release of dopamine in the dorsal striatum (DStr) and nucleus accumbens (NAc) shell. We found that D2 receptor-mediated synaptic currents were slower in the NAc and this difference occurred at the level of D2-receptor signaling. As a result of preferential coupling to Gαo, we also found that D2 receptors in MSNs demonstrated higher sensitivity for dopamine in the NAc. The higher sensitivity in the NAc was eliminated following cocaine exposure. These results identify differences in the sensitivity and timing of D2-receptor signaling across the striatum that influence how nigrostriatal and mesolimbic signals are encoded across these circuits.


The allosteric mechanism of substrate-specific transport in SLC6 is mediated by a volumetric sensor.

  • Michael V LeVine‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Neurotransmitter:sodium symporters (NSSs) in the SLC6 family terminate neurotransmission by coupling the thermodynamically favorable transport of ions to the thermodynamically unfavorable transport of neurotransmitter back into presynaptic neurons. Results from many structural, functional, and computational studies on LeuT, a bacterial NSS homolog, have provided critical insight into the mechanism of sodium-coupled transport, but the mechanism underlying substrate-specific transport rates is still not understood. We present a combination of molecular dynamics simulations, single-molecule fluorescence resonance energy transfer (smFRET) imaging, and measurements of Na+ binding and substrate transport that reveals an allosteric substrate specificity mechanism. In this mechanism, residues F259 and I359 in the substrate binding pocket couple the binding of substrate to Na+ release from the Na2 site by allosterically modulating the stability of a partially open, inward-facing state. We propose a model for transport selectivity in which residues F259 and I359 act as a volumetric sensor that inhibits the transport of bulky amino acids.


Cannabinoid CB1 and CB2 Receptor-Mediated Arrestin Translocation: Species, Subtype, and Agonist-Dependence.

  • Mikkel Søes Ibsen‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Arrestin translocation and signaling have come to the fore of the G protein-coupled receptor molecular pharmacology field. Some receptor-arrestin interactions are relatively well understood and considered responsible for specific therapeutic or adverse outcomes. Coupling of arrestins with cannabinoid receptors 1 (CB1) and 2 (CB2) has been reported, though the majority of studies have not systematically characterized the differential ligand dependence of this activity. In addition, many prior studies have utilized bovine (rather than human) arrestins, and the most widely applied assays require reporter-tagged receptors, which prevent meaningful comparison between receptor types. We have employed a bioluminescence resonance energy transfer (BRET) method that does not require the use of tagged receptors and thereby allows comparisons of arrestin translocation between receptor types, as well as with cells lacking the receptor of interest - an important control. The ability of a selection of CB1 and CB2 agonists to stimulate cell surface translocation of human and bovine β-arrestin-1 and -2 was assessed. We find that some CB1 ligands induce moderate β-arrestin-2 translocation in comparison with vasopressin V2 receptor (a robust arrestin recruiter); however, CB1 coupling with β-arrestin-1 and CB2 with either arrestin elicited low relative efficacies. A range of efficacies between ligands was evident for both receptors and arrestins. Endocannabinoid 2-arachidonoylglycerol stood out as a high efficacy ligand for translocation of β-arrestin-2 via CB1. Δ9-tetrahydrocannabinol was generally unable to elicit translocation of either arrestin subtype via CB1 or CB2; however, control experiments revealed translocation in cells not expressing CB1/CB2, which may assist in explaining some discrepancy with the literature. Overexpression of GRK2 had modest influence on CB1/CB2-induced arrestin translocation. Results with bovine and human arrestins were largely analogous, but a few instances of inconsistent rank order potencies/efficacies between bovine and human arrestins raise the possibility that subtle differences in receptor conformation stabilized by these ligands manifest in disparate affinities for the two arrestin species, with important potential consequences for interpretation in ligand bias studies. As well as contributing important information regarding CB1/CB2 ligand-dependent arrestin coupling, our study raises a number of points for consideration in the design and interpretation of arrestin recruitment assays.


X-ray structure of LeuT in an inward-facing occluded conformation reveals mechanism of substrate release.

  • Kamil Gotfryd‎ et al.
  • Nature communications‎
  • 2020‎

Neurotransmitter:sodium symporters (NSS) are conserved from bacteria to man and serve as targets for drugs, including antidepressants and psychostimulants. Here we report the X-ray structure of the prokaryotic NSS member, LeuT, in a Na+/substrate-bound, inward-facing occluded conformation. To obtain this structure, we were guided by findings from single-molecule fluorescence spectroscopy and molecular dynamics simulations indicating that L-Phe binding and mutation of the conserved N-terminal Trp8 to Ala both promote an inward-facing state. Compared to the outward-facing occluded conformation, our structure reveals a major tilting of the cytoplasmic end of transmembrane segment (TM) 5, which, together with release of the N-terminus but without coupled movement of TM1, opens a wide cavity towards the second Na+ binding site. The structure of this key intermediate in the LeuT transport cycle, in the context of other NSS structures, leads to the proposal of an intracellular release mechanism of substrate and ions in NSS proteins.


Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder.

  • Job O de Jong‎ et al.
  • Nature communications‎
  • 2021‎

We utilized forebrain organoids generated from induced pluripotent stem cells of patients with a syndromic form of Autism Spectrum Disorder (ASD) with a homozygous protein-truncating mutation in CNTNAP2, to study its effects on embryonic cortical development. Patients with this mutation present with clinical characteristics of brain overgrowth. Patient-derived forebrain organoids displayed an increase in volume and total cell number that is driven by increased neural progenitor proliferation. Single-cell RNA sequencing revealed PFC-excitatory neurons to be the key cell types expressing CNTNAP2. Gene ontology analysis of differentially expressed genes (DEgenes) corroborates aberrant cellular proliferation. Moreover, the DEgenes are enriched for ASD-associated genes. The cell-type-specific signature genes of the CNTNAP2-expressing neurons are associated with clinical phenotypes previously described in patients. The organoid overgrowth phenotypes were largely rescued after correction of the mutation using CRISPR-Cas9. This CNTNAP2-organoid model provides opportunity for further mechanistic inquiry and development of new therapeutic strategies for ASD.


Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells.

  • Stephen D Carter‎ et al.
  • Science advances‎
  • 2020‎

The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo-electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic β-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These findings describe a new ER subcompartment within cells.


G12/13 is activated by acute tethered agonist exposure in the adhesion GPCR ADGRL3.

  • Signe Mathiasen‎ et al.
  • Nature chemical biology‎
  • 2020‎

The adhesion G-protein-coupled receptor (GPCR) latrophilin 3 (ADGRL3) has been associated with increased risk of attention deficit hyperactivity disorder (ADHD) and substance use in human genetic studies. Knockdown in multiple species leads to hyperlocomotion and altered dopamine signaling. Thus, ADGRL3 is a potential target for treatment of neuropsychiatric disorders that involve dopamine dysfunction, but its basic signaling properties are poorly understood. Identification of adhesion GPCR signaling partners has been limited by a lack of tools to acutely activate these receptors in living cells. Here, we design a novel acute activation strategy to characterize ADGRL3 signaling by engineering a receptor construct in which we could trigger acute activation enzymatically. Using this assay, we found that ADGRL3 signals through G12/G13 and Gq, with G12/13 the most robustly activated. Gα12/13 is a new player in ADGRL3 biology, opening up unexplored roles for ADGRL3 in the brain. Our methodological advancements should be broadly useful in adhesion GPCR research.


The respiratory depressant effects of mitragynine are limited by its conversion to 7-OH mitragynine.

  • Rob Hill‎ et al.
  • British journal of pharmacology‎
  • 2022‎

Mitragynine, the major alkaloid in Mitragyna speciosa (kratom), is a partial agonist at the μ opioid receptor. CYP3A-dependent oxidation of mitragynine yields the metabolite 7-OH mitragynine, a more efficacious μ receptor agonist. While both mitragynine and 7-OH mitragynine can induce anti-nociception in mice, recent evidence suggests that 7-OH mitragynine formed as a metabolite is sufficient to explain the anti-nociceptive effects of mitragynine. However, the ability of 7-OH mitragynine to induce μ receptor-dependent respiratory depression has not yet been studied.


Context-dependent requirement of G protein coupling for Latrophilin-2 in target selection of hippocampal axons.

  • Daniel T Pederick‎ et al.
  • eLife‎
  • 2023‎

The formation of neural circuits requires extensive interactions of cell-surface proteins to guide axons to their correct target neurons. Trans-cellular interactions of the adhesion G protein-coupled receptor latrophilin-2 (Lphn2) with its partner teneurin-3 instruct the precise assembly of hippocampal networks by reciprocal repulsion. Lphn2 acts as a repulsive receptor in distal CA1 neurons to direct their axons to the proximal subiculum, and as a repulsive ligand in the proximal subiculum to direct proximal CA1 axons to the distal subiculum. It remains unclear if Lphn2-mediated intracellular signaling is required for its role in either context. Here, we show that Lphn2 couples to Gα12/13 in heterologous cells; this coupling is increased by constitutive exposure of the tethered agonist. Specific mutations of Lphn2's tethered agonist region disrupt its G protein coupling and autoproteolytic cleavage, whereas mutating the autoproteolytic cleavage site alone prevents cleavage but preserves a functional tethered agonist. Using an in vivo misexpression assay, we demonstrate that wild-type Lphn2 misdirects proximal CA1 axons to the proximal subiculum and that Lphn2 tethered agonist activity is required for its role as a repulsive receptor in axons. By contrast, neither tethered agonist activity nor autoproteolysis were necessary for Lphn2's role as a repulsive ligand in the subiculum target neurons. Thus, tethered agonist activity is required for Lphn2-mediated neural circuit assembly in a context-dependent manner.


Methods for automating the analysis of live-cell single-molecule FRET data.

  • Jozsef Meszaros‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2023‎

Single-molecule FRET (smFRET) is a powerful imaging platform capable of revealing dynamic changes in the conformation and proximity of biological molecules. The expansion of smFRET imaging into living cells creates both numerous new research opportunities and new challenges. Automating dataset curation processes is critical to providing consistent, repeatable analysis in an efficient manner, freeing experimentalists to advance the technical boundaries and throughput of what is possible in imaging living cells. Here, we devise an automated solution to the problem of multiple particles entering a region of interest, an otherwise labor-intensive and subjective process that had been performed manually in our previous work. The resolution of these two issues increases the quantity of FRET data and improves the accuracy with which FRET distributions are generated, increasing knowledge about the biological functions of the molecules under study. Our automated approach is straightforward, interpretable, and requires only localization and intensity values for donor and acceptor channel signals, which we compute through our previously published smCellFRET pipeline. The development of our automated approach is informed by the insights of expert experimentalists with extensive experience inspecting smFRET trajectories (displacement and intensity traces) from live cells. We test our automated approach against our recently published research on the metabotropic glutamate receptor 2 (mGluR2) and reveal substantial similarities, as well as potential shortcomings in the manual curation process that are addressable using the algorithms we developed here.


The in vitro functional profiles of fentanyl and nitazene analogs at the μ-opioid receptor - high efficacy is dangerous regardless of signaling bias.

  • Meng-Hua M Tsai‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Novel synthetic opioids (NSOs), including both fentanyl and non-fentanyl analogs that act as the μ-opioid receptor (MOR) agonists, are associated with serious intoxication and fatal overdose. Previous studies proposed that G protein biased MOR agonists are safer pain medications, while other evidence indicates that low intrinsic efficacy at MOR better explains reduced opioid side effects. Here, we characterized the in vitro functional profiles of various NSOs at MOR using adenylate cyclase inhibition and β-arrestin2 recruitment assays, in conjunction with the application of the receptor depletion approach. By fitting the concentration-response data to the operational model of agonism, we deduced the intrinsic efficacy and affinity for each opioid in the Gi protein signaling and β-arrestin2 recruitment pathways. Compared to the reference agonist DAMGO, we found that several fentanyl analogs were more efficacious at inhibiting cAMP production, whereas all fentanyl analogs were less efficacious at recruiting β-arrestin2. In contrast, the non-fentanyl 2-benzylbenzimidazole (i.e., nitazene) analogs were highly efficacious and potent in both the cAMP and β-arrestin2 assays. Our findings suggest that the high intrinsic efficacy of the NSOs in Gi protein signaling is a common property that may underlie their high risk of intoxication and overdose, highlighting the limitation of using in vitro functional bias to predict the adverse effects of opioids. Instead, our results show that, regardless of bias, opioids with sufficiently high intrinsic efficacy can be lethal, especially given the extremely high potency of many of these compounds that are now pervading the illicit drug market.


PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein.

  • Peter J Hamilton‎ et al.
  • Nature chemical biology‎
  • 2014‎

Phosphatidylinositol (4,5)-bisphosphate (PIP2) regulates the function of ion channels and transporters. Here, we demonstrate that PIP2 directly binds the human dopamine (DA) transporter (hDAT), a key regulator of DA homeostasis and a target of the psychostimulant amphetamine (AMPH). This binding occurs through electrostatic interactions with positively charged hDAT N-terminal residues and is shown to facilitate AMPH-induced, DAT-mediated DA efflux and the psychomotor properties of AMPH. Substitution of these residues with uncharged amino acids reduces hDAT-PIP2 interactions and AMPH-induced DA efflux without altering the hDAT physiological function of DA uptake. We evaluated the significance of this interaction in vivo using locomotion as a behavioral assay in Drosophila melanogaster. Expression of mutated hDAT with reduced PIP2 interaction in Drosophila DA neurons impairs AMPH-induced locomotion without altering basal locomotion. We present what is to our knowledge the first demonstration of how PIP2 interactions with a membrane protein can regulate the behaviors of complex organisms.


Novel Analogues of (R)-5-(Methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (Sumanirole) Provide Clues to Dopamine D2/D3 Receptor Agonist Selectivity.

  • Mu-Fa Zou‎ et al.
  • Journal of medicinal chemistry‎
  • 2016‎

Novel 1-, 5-, and 8-substituted analogues of sumanirole (1), a dopamine D2/D3 receptor (D2R/D3R) agonist, were synthesized. Binding affinities at both D2R and D3R were higher when determined in competition with the agonist radioligand [(3)H]7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT) than with the antagonist radioligand [(3)H]N-methylspiperone. Although 1 was confirmed as a D2R-preferential agonist, its selectivity in binding and functional studies was lower than previously reported. All analogues were determined to be D2R/D3R agonists in both GoBRET and mitogenesis functional assays. Loss of efficacy was detected for the N-1-substituted analogues at D3R. In contrast, the N-5-alkyl-substituted analogues, and notably the n-butyl-arylamides (22b and 22c), all showed improved affinity at D2R over 1 with neither a loss of efficacy nor an increase in selectivity. Computational modeling provided a structural basis for the D2R selectivity of 1, illustrating how subtle differences in the highly homologous orthosteric binding site (OBS) differentially affect D2R/D3R affinity and functional efficacy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: