Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism.

  • Jennifer C Darnell‎ et al.
  • Cell‎
  • 2011‎

FMRP loss of function causes Fragile X syndrome (FXS) and autistic features. FMRP is a polyribosome-associated neuronal RNA-binding protein, suggesting that it plays a key role in regulating neuronal translation, but there has been little consensus regarding either its RNA targets or mechanism of action. Here, we use high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) to identify FMRP interactions with mouse brain polyribosomal mRNAs. FMRP interacts with the coding region of transcripts encoding pre- and postsynaptic proteins and transcripts implicated in autism spectrum disorders (ASD). We developed a brain polyribosome-programmed translation system, revealing that FMRP reversibly stalls ribosomes specifically on its target mRNAs. Our results suggest that loss of a translational brake on the synthesis of a subset of synaptic proteins contributes to FXS. In addition, they provide insight into the molecular basis of the cognitive and allied defects in FXS and ASD and suggest multiple targets for clinical intervention.


Systematic reconstruction of autism biology from massive genetic mutation profiles.

  • Weijun Luo‎ et al.
  • Science advances‎
  • 2018‎

Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3',5'-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein-coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity.


mRIN for direct assessment of genome-wide and gene-specific mRNA integrity from large-scale RNA-sequencing data.

  • Huijuan Feng‎ et al.
  • Nature communications‎
  • 2015‎

The volume of RNA-Seq data sets in public repositories has been expanding exponentially, providing unprecedented opportunities to study gene expression regulation. Because degraded RNA samples, such as those collected from post-mortem tissues, can result in distinct expression profiles with potential biases, a particularly important step in mining these data is quality control. Here we develop a method named mRIN to directly assess mRNA integrity from RNA-Seq data at the sample and individual gene level. We systematically analyse large-scale RNA-Seq data sets of the human brain transcriptome generated by different consortia. Our analysis demonstrates that 3' bias resulting from partial RNA fragmentation in post-mortem tissues has a marked impact on global expression profiles, and that mRIN effectively identifies samples with different levels of mRNA degradation. Unexpectedly, this process has a reproducible and gene-specific component, and transcripts with different stabilities are associated with distinct functions and structural features reminiscent of mRNA decay in living cells.


DAZL Regulates Germ Cell Survival through a Network of PolyA-Proximal mRNA Interactions.

  • Leah L Zagore‎ et al.
  • Cell reports‎
  • 2018‎

The RNA binding protein DAZL is essential for gametogenesis, but its direct in vivo functions, RNA targets, and the molecular basis for germ cell loss in Dazl-null mice are unknown. Here, we mapped transcriptome-wide DAZL-RNA interactions in vivo, revealing DAZL binding to thousands of mRNAs via polyA-proximal 3' UTR interactions. In parallel, fluorescence-activated cell sorting and RNA-seq identified mRNAs sensitive to DAZL deletion in male germ cells. Despite binding a broad set of mRNAs, integrative analyses indicate that DAZL post-transcriptionally controls only a subset of its mRNA targets, namely those corresponding to a network of genes that are critical for germ cell proliferation and survival. In addition, we provide evidence that polyA sequences have key roles in specifying DAZL-RNA interactions across the transcriptome. Our results reveal a mechanism for DAZL-RNA binding and illustrate that DAZL functions as a master regulator of a post-transcriptional mRNA program essential for germ cell survival.


Codon and amino acid content are associated with mRNA stability in mammalian cells.

  • Megan E Forrest‎ et al.
  • PloS one‎
  • 2020‎

Messenger RNA (mRNA) degradation plays a critical role in regulating transcript levels in the cell and is a major control point for modulating gene expression. In yeast and other model organisms, codon identity is a powerful determinant of transcript stability, contributing broadly to impact half-lives. General principles governing mRNA stability are poorly understood in mammalian systems. Importantly, however, the degradation machinery is highly conserved, thus it seems logical that mammalian transcript half-lives would also be strongly influenced by coding determinants. Herein we characterize the contribution of coding sequence towards mRNA decay in human and Chinese Hamster Ovary cells. In agreement with previous studies, we observed that synonymous codon usage impacts mRNA stability in mammalian cells. Surprisingly, however, we also observe that the amino acid content of a gene is an additional determinant correlating with transcript stability. The impact of codon and amino acid identity on mRNA decay appears to be associated with underlying tRNA and intracellular amino acid concentrations. Accordingly, genes of similar physiological function appear to coordinate their mRNA stabilities in part through codon and amino acid content. Together, these results raise the possibility that intracellular tRNA and amino acid levels interplay to mediate coupling between translational elongation and mRNA degradation rate in mammals.


Suppression of premature transcription termination leads to reduced mRNA isoform diversity and neurodegeneration.

  • Geneva R LaForce‎ et al.
  • Neuron‎
  • 2022‎

Tight regulation of mRNA isoform expression is essential for neuronal development, maintenance, and function; however, the repertoire of proteins that govern isoform composition and abundance remains incomplete. Here, we show that the RNA kinase CLP1 regulates mRNA isoform expression through suppression of proximal cleavage and polyadenylation. We found that human stem-cell-derived motor neurons without CLP1 or with the disease-associated CLP1 p.R140H variant had distinct patterns of RNA-polymerase-II-associated cleavage and polyadenylation complex proteins that correlated with polyadenylation site usage. These changes resulted in imbalanced mRNA isoform expression of long genes important for neuronal function that were recapitulated in vivo. Strikingly, we observed the same pattern of reduced mRNA isoform diversity in 3' end sequencing data from brain tissues of patients with neurodegenerative disease. Together, our results identify a previously uncharacterized role for CLP1 in mRNA 3' end formation and reveal an mRNA misprocessing signature in neurodegeneration that may suggest a common mechanism of disease.


Deep screening of proximal and distal splicing-regulatory elements in a native sequence context.

  • Yocelyn Recinos‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Pre-mRNA splicing, a key process in gene expression, can be therapeutically modulated using various drug modalities, including antisense oligonucleotides (ASOs). However, determining promising targets is impeded by the challenge of systematically mapping splicing-regulatory elements (SREs) in their native sequence context. Here, we use the catalytically dead CRISPR-RfxCas13d RNA-targeting system (dCas13d/gRNA) as a programmable platform to bind SREs and modulate splicing by competing against endogenous splicing factors. SpliceRUSH, a high-throughput screening method, was developed to map SREs in any gene of interest using a lentivirus gRNA library that tiles the genetic region, including distal intronic sequences. When applied to SMN2, a therapeutic target for spinal muscular atrophy, SpliceRUSH robustly identified not only known SREs, but also a novel distal intronic splicing enhancer, which can be targeted to alter exon 7 splicing using either dCas13d/gRNA or ASOs. This technology enables a deeper understanding of splicing regulation with applications for RNA-based drug discovery.


MBNL Sequestration by Toxic RNAs and RNA Misprocessing in the Myotonic Dystrophy Brain.

  • Marianne Goodwin‎ et al.
  • Cell reports‎
  • 2015‎

For some neurological disorders, disease is primarily RNA mediated due to expression of non-coding microsatellite expansion RNAs (RNA(exp)). Toxicity is thought to result from enhanced binding of proteins to these expansions and depletion from their normal cellular targets. However, experimental evidence for this sequestration model is lacking. Here, we use HITS-CLIP and pre-mRNA processing analysis of human control versus myotonic dystrophy (DM) brains to provide compelling evidence for this RNA toxicity model. MBNL2 binds directly to DM repeat expansions in the brain, resulting in depletion from its normal RNA targets with downstream effects on alternative splicing and polyadenylation. Similar RNA processing defects were detected in Mbnl compound-knockout mice, highlighted by dysregulation of Mapt splicing and fetal tau isoform expression in adults. These results demonstrate that MBNL proteins are directly sequestered by RNA(exp) in the DM brain and introduce a powerful experimental tool to evaluate RNA-mediated toxicity in other expansion diseases.


Acetylation of Cytidine in mRNA Promotes Translation Efficiency.

  • Daniel Arango‎ et al.
  • Cell‎
  • 2018‎

Generation of the "epitranscriptome" through post-transcriptional ribonucleoside modification embeds a layer of regulatory complexity into RNA structure and function. Here, we describe N4-acetylcytidine (ac4C) as an mRNA modification that is catalyzed by the acetyltransferase NAT10. Transcriptome-wide mapping of ac4C revealed discretely acetylated regions that were enriched within coding sequences. Ablation of NAT10 reduced ac4C detection at the mapped mRNA sites and was globally associated with target mRNA downregulation. Analysis of mRNA half-lives revealed a NAT10-dependent increase in stability in the cohort of acetylated mRNAs. mRNA acetylation was further demonstrated to enhance substrate translation in vitro and in vivo. Codon content analysis within ac4C peaks uncovered a biased representation of cytidine within wobble sites that was empirically determined to influence mRNA decoding efficiency. These findings expand the repertoire of mRNA modifications to include an acetylated residue and establish a role for ac4C in the regulation of mRNA translation.


Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation.

  • Heather Lee‎ et al.
  • Nature cell biology‎
  • 2019‎

Haematopoietic stem cells (HSCs) maintain balanced self-renewal and differentiation, but how these functions are precisely regulated is not fully understood. N6-methyladenosine (m6A) messenger RNA methylation has emerged as an important mode of epitranscriptional gene expression regulation affecting many biological processes. We show that deletion of the m6A methyltransferase Mettl3 from the adult haematopoietic system led to an accumulation of HSCs in the bone marrow and a marked reduction of reconstitution potential due to a blockage of HSC differentiation. Interestingly, deleting Mettl3 from myeloid cells using Lysm-cre did not impact myeloid cell number or function. RNA sequencing revealed 2,073 genes with significant m6A modifications in HSCs. Myc was identified as a direct target of m6A in HSCs. Mettl3-deficient HSCs failed to upregulate MYC expression following stimulation to differentiate and enforced expression of Myc rescued differentiation defects of Mettl3-deficient HSCs. Our results reveal a key role of m6A in governing HSC differentiation.


Endothelial Notch signaling directly regulates the small GTPase RND1 to facilitate Notch suppression of endothelial migration.

  • Bhairavi Swaminathan‎ et al.
  • Scientific reports‎
  • 2022‎

To control sprouting angiogenesis, endothelial Notch signaling suppresses tip cell formation, migration, and proliferation while promoting barrier formation. Each of these responses may be regulated by distinct Notch-regulated effectors. Notch activity is highly dynamic in sprouting endothelial cells, while constitutive Notch signaling drives homeostatic endothelial polarization, indicating the need for both rapid and constitutive Notch targets. In contrast to previous screens that focus on genes regulated by constitutively active Notch, we characterized the dynamic response to Notch. We examined transcriptional changes from 1.5 to 6 h after Notch signal activation via ligand-specific or EGTA induction in cultured primary human endothelial cells and neonatal mouse brain. In each combination of endothelial type and Notch manipulation, transcriptomic analysis identified distinct but overlapping sets of rapidly regulated genes and revealed many novel Notch target genes. Among the novel Notch-regulated signaling pathways identified were effectors in GPCR signaling, notably, the constitutively active GTPase RND1. In endothelial cells, RND1 was shown to be a novel direct Notch transcriptional target and required for Notch control of sprouting angiogenesis, endothelial migration, and Ras activity. We conclude that RND1 is directly regulated by endothelial Notch signaling in a rapid fashion in order to suppress endothelial migration.


A cell-type-specific alternative splicing regulator shapes synapse properties in a trans-synaptic manner.

  • Lisa Traunmüller‎ et al.
  • Cell reports‎
  • 2023‎

The specification of synaptic properties is fundamental for the function of neuronal circuits. "Terminal selector" transcription factors coordinate terminal gene batteries that specify cell-type-specific properties. Moreover, pan-neuronal splicing regulators have been implicated in directing neuronal differentiation. However, the cellular logic of how splicing regulators instruct specific synaptic properties remains poorly understood. Here, we combine genome-wide mapping of mRNA targets and cell-type-specific loss-of-function studies to uncover the contribution of the RNA-binding protein SLM2 to hippocampal synapse specification. Focusing on pyramidal cells and somatostatin (SST)-positive GABAergic interneurons, we find that SLM2 preferentially binds and regulates alternative splicing of transcripts encoding synaptic proteins. In the absence of SLM2, neuronal populations exhibit normal intrinsic properties, but there are non-cell-autonomous synaptic phenotypes and associated defects in a hippocampus-dependent memory task. Thus, alternative splicing provides a critical layer of gene regulation that instructs specification of neuronal connectivity in a trans-synaptic manner.


Systematic dissection of coordinated stromal remodeling identifies Sox10+ glial cells as a therapeutic target in myelofibrosis.

  • Shawn M Sarkaria‎ et al.
  • Cell stem cell‎
  • 2023‎

Remodeling of the tissue niche is often evident in diseases, yet, the stromal alterations and their contribution to pathogenesis are poorly characterized. Bone marrow fibrosis is a maladaptive feature of primary myelofibrosis (PMF). We performed lineage tracing and found that most collagen-expressing myofibroblasts were derived from leptin-receptor-positive (LepR+) mesenchymal cells, whereas a minority were from Gli1-lineage cells. Deletion of Gli1 did not impact PMF. Unbiased single-cell RNA sequencing (scRNA-seq) confirmed that virtually all myofibroblasts originated from LepR-lineage cells, with reduced expression of hematopoietic niche factors and increased expression of fibrogenic factors. Concurrently, endothelial cells upregulated arteriolar-signature genes. Pericytes and Sox10+ glial cells expanded drastically with heightened cell-cell signaling, suggesting important functional roles in PMF. Chemical or genetic ablation of bone marrow glial cells ameliorated fibrosis and improved other pathology in PMF. Thus, PMF involves complex remodeling of the bone marrow microenvironment, and glial cells represent a promising therapeutic target.


A clustering property of highly-degenerate transcription factor binding sites in the mammalian genome.

  • Chaolin Zhang‎ et al.
  • Nucleic acids research‎
  • 2006‎

Transcription factor binding sites (TFBSs) are short DNA sequences interacting with transcription factors (TFs), which regulate gene expression. Due to the relatively short length of such binding sites, it is largely unclear how the specificity of protein-DNA interaction is achieved. Here, we have performed a genome-wide analysis of TFBS-like sequences for the transcriptional repressor, RE1 Silencing Transcription Factor (REST), as well as for several other representative mammalian TFs (c-myc, p53, HNF-1 and CREB). We find a nonrandom distribution of inexact sites for these TFs, referred to as highly-degenerate TFBSs, that are enriched around the cognate binding sites. Comparisons among human, mouse and rat orthologous promoters reveal that these highly-degenerate sites are conserved significantly more than expected by random chance, suggesting their positive selection during evolution. We propose that this arrangement provides a favorable genomic landscape for functional target site selection.


Cell type-specific CLIP reveals that NOVA regulates cytoskeleton interactions in motoneurons.

  • Yuan Yuan‎ et al.
  • Genome biology‎
  • 2018‎

Alternative RNA processing plays an essential role in shaping cell identity and connectivity in the central nervous system. This is believed to involve differential regulation of RNA processing in various cell types. However, in vivo study of cell type-specific post-transcriptional regulation has been a challenge. Here, we describe a sensitive and stringent method combining genetics and CLIP (crosslinking and immunoprecipitation) to globally identify regulatory interactions between NOVA and RNA in the mouse spinal cord motoneurons.


Prediction of clustered RNA-binding protein motif sites in the mammalian genome.

  • Chaolin Zhang‎ et al.
  • Nucleic acids research‎
  • 2013‎

Sequence-specific interactions of RNA-binding proteins (RBPs) with their target transcripts are essential for post-transcriptional gene expression regulation in mammals. However, accurate prediction of RBP motif sites has been difficult because many RBPs recognize short and degenerate sequences. Here we describe a hidden Markov model (HMM)-based algorithm mCarts to predict clustered functional RBP-binding sites by effectively integrating the number and spacing of individual motif sites, their accessibility in local RNA secondary structures and cross-species conservation. This algorithm learns and quantifies rules of these features, taking advantage of a large number of in vivo RBP-binding sites obtained from cross-linking and immunoprecipitation data. We applied this algorithm to study two representative RBP families, Nova and Mbnl, which regulate tissue-specific alternative splicing through interacting with clustered YCAY and YGCY elements, respectively, and predicted their binding sites in the mouse transcriptome. Despite the low information content in individual motif elements, our algorithm made specific predictions for successful experimental validation. Analysis of predicted sites also revealed cases of extensive and distal RBP-binding sites important for splicing regulation. This algorithm can be readily applied to other RBPs to infer their RNA-regulatory networks. The software is freely available at http://zhanglab.c2b2.columbia.edu/index.php/MCarts.


A Role for Sensory end Organ-Derived Signals in Regulating Muscle Spindle Proprioceptor Phenotype.

  • Dawei Wu‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2019‎

Proprioceptive feedback from Group Ia/II muscle spindle afferents and Group Ib Golgi tendon afferents is critical for the normal execution of most motor tasks, yet how these distinct proprioceptor subtypes emerge during development remains poorly understood. Using molecular genetic approaches in mice of either sex, we identified 24 transcripts that have not previously been associated with a proprioceptor identity. Combinatorial expression analyses of these markers reveal at least three molecularly distinct proprioceptor subtypes. In addition, we find that 12 of these transcripts are expressed well after proprioceptors innervate their respective sensory receptors, and expression of three of these markers, including the heart development molecule Heg1, is significantly reduced in mice that lack muscle spindles. These data reveal Heg1 as a putative marker for proprioceptive muscle spindle afferents. Moreover, they suggest that the phenotypic specialization of functionally distinct proprioceptor subtypes depends, in part, on extrinsic sensory receptor organ-derived signals.SIGNIFICANCE STATEMENT Sensory feedback from muscle spindle (MS) and Golgi tendon organ (GTO) sensory end organs is critical for normal motor control, but how distinct MS and GTO afferent sensory neurons emerge during development remains poorly understood. Using (bulk) transcriptome analysis of genetically identified proprioceptors, this work reveals molecular markers for distinct proprioceptor subsets, including some that appear selectively expressed in MS afferents. Detailed analysis of the expression of these transcripts provides evidence that MS/GTO afferent subtype phenotypes may, at least in part, emerge through extrinsic, sensory end organ-derived signals.


Rbfox Splicing Factors Promote Neuronal Maturation and Axon Initial Segment Assembly.

  • Martin Jacko‎ et al.
  • Neuron‎
  • 2018‎

Neuronal maturation requires dramatic morphological and functional changes, but the molecular mechanisms governing this process are not well understood. Here, we studied the role of Rbfox1, Rbfox2, and Rbfox3 proteins, a family of tissue-specific splicing regulators mutated in multiple neurodevelopmental disorders. We generated Rbfox triple knockout (tKO) ventral spinal neurons to define a comprehensive network of alternative exons under Rbfox regulation and to investigate their functional importance in the developing neurons. Rbfox tKO neurons exhibit defects in alternative splicing of many cytoskeletal, membrane, and synaptic proteins, and display immature electrophysiological activity. The axon initial segment (AIS), a subcellular structure important for action potential initiation, is diminished upon Rbfox depletion. We identified an Rbfox-regulated splicing switch in ankyrin G, the AIS "interaction hub" protein, that regulates ankyrin G-beta spectrin affinity and AIS assembly. Our data show that the Rbfox-regulated splicing program plays a crucial role in structural and functional maturation of postmitotic neurons.


NOVA-dependent regulation of cryptic NMD exons controls synaptic protein levels after seizure.

  • Taesun Eom‎ et al.
  • eLife‎
  • 2013‎

The neuronal RNA binding protein NOVA regulates splicing, shuttles to the cytoplasm, and co-localizes with target transcripts in dendrites, suggesting links between splicing and local translation. Here we identified >200 transcripts showing NOVA-dependent changes in abundance, but, surprisingly, HITS-CLIP revealed NOVA binds these RNAs in introns rather than 3' UTRs. This led us to discover NOVA-regulated splicing of cryptic exons within these introns. These exons triggered nonsense mediated decay (NMD), as UPF1 and protein synthesis were required for NOVA's effect on RNA levels. Their regulation was dynamic and physiologically relevant. The NMD exons were regulated by seizures, which also induced changes in Nova subcellular localization and mediated large changes in synaptic proteins, including proteins implicated in familial epilepsy. Moreover, Nova haploinsufficient mice had spontaneous epilepsy. The data reveal a hidden means of dynamic RNA regulation linking electrical activity to splicing and protein output, and of mediating homeostatic excitation/inhibition balance in neurons.DOI:http://dx.doi.org/10.7554/eLife.00178.001.


Identification of novel androgen-regulated pathways and mRNA isoforms through genome-wide exon-specific profiling of the LNCaP transcriptome.

  • Prabhakar Rajan‎ et al.
  • PloS one‎
  • 2011‎

Androgens drive the onset and progression of prostate cancer (PCa) by modulating androgen receptor (AR) transcriptional activity. Although several microarray-based studies have identified androgen-regulated genes, here we identify in-parallel global androgen-dependent changes in both gene and alternative mRNA isoform expression by exon-level analyses of the LNCaP transcriptome. While genome-wide gene expression changes correlated well with previously-published studies, we additionally uncovered a subset of 226 novel androgen-regulated genes. Gene expression pathway analysis of this subset revealed gene clusters associated with, and including the tyrosine kinase LYN, as well as components of the mTOR (mammalian target of rapamycin) pathway, which is commonly dysregulated in cancer. We also identified 1279 putative androgen-regulated alternative events, of which 325 (∼25%) mapped to known alternative splicing events or alternative first/last exons. We selected 30 androgen-dependent alternative events for RT-PCR validation, including mRNAs derived from genes encoding tumour suppressors and cell cycle regulators. Of seven positively-validating events (∼23%), five events involved transcripts derived from alternative promoters of known AR gene targets. In particular, we found a novel androgen-dependent mRNA isoform derived from an alternative internal promoter within the TSC2 tumour suppressor gene, which is predicted to encode a protein lacking an interaction domain required for mTOR inhibition. We confirmed that expression of this alternative TSC2 mRNA isoform was directly regulated by androgens, and chromatin immunoprecipitation indicated recruitment of AR to the alternative promoter region at early timepoints following androgen stimulation, which correlated with expression of alternative transcripts. Together, our data suggest that alternative mRNA isoform expression might mediate the cellular response to androgens, and may have roles in clinical PCa.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: