Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,795 papers

ILs-3, 6 and 11 increase, but ILs-10 and 24 decrease stemness of human prostate cancer cells in vitro.

  • Dandan Yu‎ et al.
  • Oncotarget‎
  • 2015‎

Cancer stem cells (CSCs) are associated with cancer recurrence and metastasis. Prostate cancer cells often metastasize to the bone with a complex microenvironment of cytokines favoring cell survival. In this study, the cell stemness influence of a group of interleukins including IL-3, 6, 10, 11 and 24 on human prostate cancer cell lines LNCaP and PC-3 was explored in vitro. Sulforhodamine B(SRB) and 5-ethynyl-2'-deoxyuridine (EdU) assays were applied to examine the effect on cell proliferation, and wound healing and transwell assays were used for migration and invasion studies, in addition to colony formation, Western blotting and flowcytometry for the expression of stemness factors and chemotherapy sensitivity. We observed that ILs-3, 6 and 11 stimulated while ILs-10 and 24 inhibited the growth, invasion and migration of both cell lines. Interestingly, ILs-3, 6 and 11 significantly promoted colony formation and increased the expression of SOX2, CD44 and ABCG2 in both prostate cancer cell lines. However, ILs-10 and 24 showed the opposite effect on the expression of these factors. In line with the above findings, treatment with either IL-3 or IL-6 or IL-11 decreased the chemosensitivity to docetaxel while treatment with either IL-10 or IL-24 increased the sensitivity of docetaxel chemotherapy. In conclusion, our results suggest that ILs-3, 6 and 11 function as tumor promoters while ILs-10 and 24 function as tumor suppressors in the prostate cancer cell lines PC-3 and LNCaP in vitro, and such differences may attribute to their different effect on the stemness of PCa cells.


Treatment Effect of Clopidogrel Plus Aspirin Within 12 Hours of Acute Minor Stroke or Transient Ischemic Attack.

  • Zixiao Li‎ et al.
  • Journal of the American Heart Association‎
  • 2016‎

The aim of this study was to analyze the benefits and safety associated with the combination therapy of clopidogrel and aspirin among minor stroke or transient ischemic attack patients treated within 12 hours.


Progesterone exerts neuroprotective effects and improves long-term neurologic outcome after intracerebral hemorrhage in middle-aged mice.

  • Chao Jiang‎ et al.
  • Neurobiology of aging‎
  • 2016‎

In this study, we examined the effect of progesterone on histopathologic and functional outcomes of intracerebral hemorrhage (ICH) in 10- to 12-month-old mice. Progesterone or vehicle was administered by intraperitoneal injection 1 hour after collagenase-induced ICH and then by subcutaneous injections at 6, 24, and 48 hours. Oxidative and nitrosative stress were assayed at 12 hours post-ICH. Injury markers were examined on day 1, and lesion was examined on day 3. Neurologic deficits were examined for 28 days. Progesterone posttreatment reduced lesion volume, brain swelling, edema, and cell degeneration and improved long-term neurologic function. These protective effects were associated with reductions in protein carbonyl formation, protein nitrosylation, and matrix metalloproteinase-9 activity and attenuated cellular and molecular inflammatory responses. Progesterone also reduced vascular endothelial growth factor expression, increased neuronal-specific Na(+)/K(+) ATPase ɑ3 subunit expression, and reduced protein kinase C-dependent Na(+)/K(+) ATPase phosphorylation. Furthermore, progesterone reduced glial scar thickness, myelin loss, brain atrophy, and residual injury volume on day 28 after ICH. With multiple brain targets, progesterone warrants further investigation for its potential use in ICH therapy.


Prognostic factors in patients with recurrent hepatocellular carcinoma treated with salvage liver transplantation: a single-center study.

  • Pusen Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Although salvage liver transplantation (LT) has been widely adopted as a treatment for recurrent hepatocellular carcinoma(HCC), candidate selection criteria have not been established. This single-center study aimed to identify risk factors associated with HCC recurrence and survival following salvage LT. The study included 74 patients treated with salvage LT between October 2001 and February 2013. The median follow-up was 37.2 months after LT. There were 29 cases of HCC recurrence and 31 deaths following LT. Microvascular invasion at the time of liver resection, a time interval to post-LR HCC recurrence of ≤ 12months, an alpha-fetoprotein level at LT greater than 200 ng/mL, and having undergone LT outside of the UCSF criteria were independent risk factors for HCC recurrence after salvage LT. Patients with no more than one risk factor had a 5-year recurrence-free survival rate of 71.2% compared to 15.9% in patients with two or more risk factors. These findings suggest that to avoid post-LT HCC recurrence and a dismal prognosis, patients with no more than one risk factor for recurrence should be given priority for salvage LT. These criteria may improve the outcomes of patients treated with salvage LT and facilitate the effective use of limited organ supplies.


Acetylation of lysine 109 modulates pregnane X receptor DNA binding and transcriptional activity.

  • Danielle Pasquel‎ et al.
  • Biochimica et biophysica acta‎
  • 2016‎

Pregnane X receptor (PXR) is a major transcriptional regulator of xenobiotic metabolism and transport pathways in the liver and intestines, which are critical for protecting organisms against potentially harmful xenobiotic and endobiotic compounds. Inadvertent activation of drug metabolism pathways through PXR is known to contribute to drug resistance, adverse drug-drug interactions, and drug toxicity in humans. In both humans and rodents, PXR has been implicated in non-alcoholic fatty liver disease, diabetes, obesity, inflammatory bowel disease, and cancer. Because of PXR's important functions, it has been a therapeutic target of interest for a long time. More recent mechanistic studies have shown that PXR is modulated by multiple PTMs. Herein we provide the first investigation of the role of acetylation in modulating PXR activity. Through LC-MS/MS analysis, we identified lysine 109 (K109) in the hinge as PXR's major acetylation site. Using various biochemical and cell-based assays, we show that PXR's acetylation status and transcriptional activity are modulated by E1A binding protein (p300) and sirtuin 1 (SIRT1). Based on analysis of acetylation site mutants, we found that acetylation at K109 represses PXR transcriptional activity. The mechanism involves loss of RXRα dimerization and reduced binding to cognate DNA response elements. This mechanism may represent a promising therapeutic target using modulators of PXR acetylation levels. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.


Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

  • Hao Li‎ et al.
  • Nature‎
  • 2016‎

The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a chemically tractable target that could be exploited by next-generation anti-malarial agents.


Characterization of patient-derived tumor xenografts (PDXs) as models for estrogen receptor positive (ER+HER2- and ER+HER2+) breast cancers.

  • Noriko Kanaya‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2017‎

The research was to appraise the utility of the patient-derived tumor xenografts (PDXs) as models of estrogen receptor positive (ER+HER2- and ER+HER2+) breast cancers. We compared protein expression profiles by Reverse Phase Protein Array (RPPA) in tumors that resulted in PDXs compared to those that did not. Our overall PDX intake rate for ER+ breast cancer was 9% (9/97). The intake rate for ER+HER2+ tumors (3/16, 19%) was higher than for ER+HER2- tumors (6/81, 7%). Heat map analyses of RPPA data showed that ER+HER2- tumors were divided into 2 groups by luminal A/B signature [protein expression of ER, AR, Bcl-2, Bim (BCL2L11), GATA3 and INPP4b], and this expression signature was also associated with the rate of PDX intake. Cell survival pathways such as the PI3K/AKT signaling and RAS/ERK pathways were more activated in the specimens that could be established as PDX in both classes. Expression of the ER protein itself may have a bearing on the potential success of an ER+ PDX model. In addition, HER2 and its downstream protein expressions were up-regulated in the ER+HER2+ patient tumors that were successfully established as PDX models. Moreover, the comparison of RPPA data between original and PDX tumors suggested that the selection/adaptation process required to grow the tumors in mice is unavoidable for generation of ER+ PDX models, and we identified differences between patient tumor samples and paired PDX tumors. A better understanding of the biological characteristics of ER+PDX would be the key to using PDX models in assessing treatment strategies in a preclinical setting.


Increased maternal consumption of methionine as its hydroxyl analog promoted neonatal intestinal growth without compromising maternal energy homeostasis.

  • Heju Zhong‎ et al.
  • Journal of animal science and biotechnology‎
  • 2016‎

To determine responses of neonatal intestine to maternal increased consumption of DL-methionine (DLM) or DL-2-hydroxy-4-methylthiobutanoic acid (HMTBA), eighteen primiparous sows (Landrace × Yorkshire) were allocated based on body weight and backfat thickness to the control, DLM and HMTBA groups (n = 6), with the nutritional treatments introduced from postpartum d0 to d14.


Downregulation of matrix metalloproteinase‑19 induced by respiratory syncytial viral infection affects the interaction between epithelial cells and fibroblasts.

  • Xiuxiu Wu‎ et al.
  • Molecular medicine reports‎
  • 2016‎

The present study was designed to examine the expression and function of matrix metalloproteinase‑19 (MMP‑19), which is downregulated following respiratory syncytial virus (RSV) infection. The diverse expression levels of MMP were examined using a designed cDNA expression array. The expression and secretion of MMP‑19 was examined using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis and ELISA, respectively. The proliferation of epithelial cells and lung fibroblasts were examined using flow cytometry. The epithelial‑mesenchymal transition (EMT) was also examined by performing western blot and RT‑qPCR analyses. The results of the cDNA assay showed that infection with RSV resulted in the abnormal expression of certain metalloproteinases. Among these, the expression of MMP‑19 decreased 3 and 7 days following infection. By using flow cytometric, western blot and RT‑qPCR analyses, the present study demonstrated that the downregulation of MMP‑19 inhibited the proliferation of epithelial cells, promoted the EMT and induced the proliferation of lung fibroblasts. Taken together, the findings of the present study suggested that the downregulation of MMP‑19 following RSV infection may be associated with the development of airway hyper‑responsiveness.


Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis.

  • Hai-Yan Li‎ et al.
  • Scientific reports‎
  • 2015‎

Activation of hepatic stellate cells (HSCs) by transforming growth factor-β1 (TGF-β1) initiates HBV-associated fibrogenesis. The mechanism of TGF-β1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF-β1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF-β1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF-β1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF-β1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF-β1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated α-SMA, collagen I, and TGF-β1 synthesis. These findings indicate that TGF-β1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-β receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis.


Posterior Cruciate Ligament Retention versus Posterior Stabilization for Total Knee Arthroplasty: A Meta-Analysis.

  • Chao Jiang‎ et al.
  • PloS one‎
  • 2016‎

Although being debated for many years, the superiority of posterior cruciate-retaining (CR) total knee arthroplasty (TKA) and posterior-stabilized (PS) TKA remains controversial. We compare the knee scores, post-operative knee range of motion (ROM), radiological outcomes about knee kinematic and complications between CR TKA and PS TKA.


HIC1 attenuates invasion and metastasis by inhibiting the IL-6/STAT3 signalling pathway in human pancreatic cancer.

  • Bin Hu‎ et al.
  • Cancer letters‎
  • 2016‎

Hypermethylated in cancer 1 (HIC1) is a tumour suppressor gene that is frequently deleted or epigenetically silenced in many human cancers. However, the molecular function of HIC1 in pancreatic cancer has not been fully elucidated, especially in cancer invasion and metastasis. We aimed to clarify the clinical relevance of HIC1 and human pancreatic cancer and the mechanism of its effect on invasion and metastasis .HIC1 was downregulated in pancreatic cancer patient cancer tissue and pancreatic cancer cell lines. A tissue microarray analysis demonstrated that negative HIC1 expression predicted advanced pathological stages and worse patient survival. In addition, HIC1 inhibited the invasion and metastasis of pancreatic cancer cells both in vitro and in vivo. Finally, HIC1 repressed the expression of STAT3 target genes, including c-Myc, VEGF, CyclinD1, MMP2 and MMP9, by binding and interacting with STAT3 to impede its DNA-binding ability but without affecting the protein levels of STAT3 and p-STAT3. Therefore, HIC1 appears to function as a STAT3 inhibitor and may be a promising target for cancer research and for the development of an optimal treatment approach for pancreatic cancer.


Cocaine Self-Administration and Extinction Leads to Reduced Glial Fibrillary Acidic Protein Expression and Morphometric Features of Astrocytes in the Nucleus Accumbens Core.

  • Michael D Scofield‎ et al.
  • Biological psychiatry‎
  • 2016‎

As a more detailed picture of nervous system function emerges, diversity of astrocyte function becomes more widely appreciated. While it has been shown that cocaine experience impairs astroglial glutamate uptake and release in the nucleus accumbens (NAc), few studies have explored effects of self-administration on the structure and physiology of astrocytes. We investigated the effects of extinction from daily cocaine self-administration on astrocyte characteristics including glial fibrillary acidic protein (GFAP) expression, surface area, volume, and colocalization with a synaptic marker.


Development and characterization of simple sequence repeat (SSR) markers based on a full-length cDNA library of Scutellaria baicalensis.

  • Yuan Yuan‎ et al.
  • Genomics‎
  • 2015‎

Scutellaria baicalensis Georgi is an herbaceous perennial plant used as one of the staple Chinese herbal medicines in China with a long officinal history. However, research on S. baicalensis is currently limited due to the lack of genome and gene expression information. A full-length cDNA library from leaves and roots of S. baicalensis subjected to water deficit and heat, conditions that have been shown to affect baicalein accumulation, was constructed. There were 6491 expressed sequence tags (ESTs) obtained. UniGenes were assembled by BLAST similarity searches and annotated with Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 78 simple sequence repeats (SSRs) were identified and SSR markers associated with the active ingredients of S. baicalensis were selected. EST-SSR transferability was determined from 5 populations from different areas. This study is the first to produce a large volume of gene expression data from S. baicalensis to facilitate gene discovery in S. baicalensis and provide an important resource for molecular genetic and functional genomic studies in this species.


Alleviation of gut inflammation by Cdx2/Pxr pathway in a mouse model of chemical colitis.

  • Wei Dou‎ et al.
  • PloS one‎
  • 2012‎

Pregnane X Receptor (PXR), a master regulator of drug metabolism and inflammation, is abundantly expressed in the gastrointestinal tract. Baicalein and its O-glucuronide baicalin are potent anti-inflammatory and anti-cancer herbal flavonoids that undergo a complex cycle of interconversion in the liver and gut. We sought to investigate the role these flavonoids play in inhibiting gut inflammation by an axis involving PXR and other potential factors. The consequences of PXR regulation and activation by the herbal flavonoids, baicalein and baicalin were evaluated in vitro in human colon carcinoma cells and in vivo using wild-type, Pxr-null, and humanized (hPXR) PXR mice. Baicalein, but not its glucuronidated metabolite baicalin, activates PXR in a Cdx2-dependent manner in vitro, in human colon carcinoma LS174T cells, and in the murine colon in vivo. While both flavonoids abrogate dextran sodium sulfate (DSS)-mediated colon inflammation in vivo, oral delivery of a potent bacterial β-glucuronidase inhibitor eliminates baicalin's effect on gastrointestinal inflammation by preventing the microbial conversion of baicalin to baicalien. Finally, reduction of gastrointestinal inflammation requires the binding of Cdx2 to a specific proximal site on the PXR promoter. Pharmacological targeting of intestinal PXR using natural metabolically labile ligands could serve as effective and potent therapeutics for gut inflammation that avert systemic drug interactions.


A new antifibrotic target of Ac-SDKP: inhibition of myofibroblast differentiation in rat lung with silicosis.

  • Hong Xu‎ et al.
  • PloS one‎
  • 2012‎

Myofibroblast differentiation, characterized by α-smooth muscle actin (α-SMA) expression, is a key process in organ fibrosis, and is induced by TGF-β. Here we examined whether an anti-fibrotic agent, N-acetyl-seryl-aspartyl-lysylproline (Ac-SDKP), can regulate induction of TGF-β signaling and myofibroblast differentiation as a potential key component of its anti-fibrotic mechanism in vivo and in vitro.


TGF-β Induces Degradation of PTHrP Through Ubiquitin-Proteasome System in Hepatocellular Carcinoma.

  • Hao Li‎ et al.
  • Journal of Cancer‎
  • 2015‎

Both transforming growth factor-β (TGF-β) and parathyroid hormone-related protein (PTHrP) regulate important cellular processes, such as apoptosis in the development of hepatocellular carcinoma. However, the mechanisms of regulation of PTHrP by TGF-β are largely unknown. We hypothesized that TGF-β regulates the expression of PTHrP protein through a post-translational mechanism. Using hepatocellular carcinoma cell lines as the in vitro model, we investigated the effects of TGF-β on protein expression and post-translational processing of PTHrP. We found that TGF-β treatment led to protein degradation of PTHrP through the ubiquitin-proteasome-dependent pathway. We also provided evidence to show that Smurf2 was the E3 ligase responsible for the ubiquitination of PTHrP. Furthermore, using immunohistochemistry on human hepatocellular carcinoma specimens and a tissue array, we found that the expression of PTHrP was predominantly in the cancer cells, whereas the expression of TGF-β was present in non-neoplastic liver tissue adjacent to hepatocellular carcinoma. Our findings reveal a novel mechanism whereby TGF-β may regulate PTHrP in hepatocellular carcinogenesis and lack of TGF-β in hepatocellular carcinoma may promote cancer progression. Promotion of PTHrP degradation provides a novel target of therapeutic intervention to sensitize hepatocellular carcinoma cells to cytostatic and/or pro-apoptotic signals.


Epstein-Barr Virus MicroRNAs are Expressed in Patients with Chronic Lymphocytic Leukemia and Correlate with Overall Survival.

  • Alessandra Ferrajoli‎ et al.
  • EBioMedicine‎
  • 2015‎

Although numerous studies highlighted the role of Epstein-Barr Virus (EBV) in B-cell transformation, the involvement of EBV proteins or genome in the development of the most frequent adult leukemia, chronic lymphocytic leukemia (CLL), has not yet been defined. We hypothesized that EBV microRNAs contribute to progression of CLL and demonstrated the presence of EBV miRNAs in B-cells, in paraffin-embedded bone marrow biopsies and in the plasma of patients with CLL by using three different methods (small RNA-sequencing, quantitative reverse transcription PCR [q-RT-PCR] and miRNAs in situ hybridization [miRNA-ISH]). We found that EBV miRNA BHRF1-1 expression levels were significantly higher in the plasma of patients with CLL compared with healthy individuals (p < 0 · 0001). Notably, BHRF1-1 as well as BART4 expression were detected in the plasma of either seronegative or seropositive (anti-EBNA-1 IgG and EBV DNA tested) patients; similarly, miRNA-ISH stained positive in bone marrow specimens while LMP1 and EBER immunohistochemistry failed to detect viral proteins and RNA. We also found that BHRF1-1 plasma expression levels were positively associated with elevated beta-2-microglobulin levels and advanced Rai stages and observed a correlation between higher BHRF1-1 expression levels and shorter survival in two independent patients' cohorts. Furthermore, in the majority of CLL cases where BHRF1-1 was exogenously induced in primary malignant B cells the levels of TP53 were reduced. Our findings suggest that EBV may have a role in the process of disease progression in CLL and that miRNA RT-PCR and miRNAs ISH could represent additional methods to detect EBV miRNAs in patients with CLL.


Excretory/secretory proteome of 14-day schistosomula, Schistosoma japonicum.

  • Xiaodan Cao‎ et al.
  • Journal of proteomics‎
  • 2016‎

Schistosomiasis remains a serious public health problem, with 200 million people infected and 779 million people at risk worldwide. The schistosomulum is the early stage of the complex lifecycle of Schistosoma japonicum in their vertebrate hosts, and is the main target of vaccine-induced protective immunity. Excretory/secretory (ES) proteins play a major role in host-parasite interactions and ES protein compositions of schistosomula of S. japonicum have not been characterized to date. In the present study, the proteome of ES proteins from 14 day schistosomula of S. japonicum was analyzed by liquid chromatography/tandem mass spectrometry and 713 unique proteins were finally identified. Gene ontology and pathway analysis revealed that identified proteins were mainly involved in carbohydrate metabolism, degradation, response to stimulus, oxidation-reduction, biological regulation and binding. Flow cytometry analysis demonstrated that thioredoxin peroxidase identified in this study had the effect on inhibiting MHCII and CD86 expression on LPS-activated macrophages. The present study provides insight into the growth and development of the schistosome in the final host and valuable information for screening vaccine candidates for schistosomiasis.


XRCC3 is a promising target to improve the radiotherapy effect of esophageal squamous cell carcinoma.

  • Jingjing Cheng‎ et al.
  • Cancer science‎
  • 2015‎

Radiotherapy is widely applied for treatment of esophageal squamous cell carcinoma (ESCC). The Rad51-related protein XRCC3 plays roles in the recombinational repair of DNA double-strand breaks to maintain chromosome stability and repair DNA damage. The present study aimed to investigate the effect of XRCC3 on the radiotherapy response of ESCC and the underlying mechanisms of the roles of XRCC3 in ESCC radiosensitivity. XRCC3 expression in ESCC cells and tissues was higher than that in normal esophageal epithelial cells and corresponding adjacent noncancerous esophageal tissue. High XRCC3 expression was positively correlated with resistance to chemoradiotherapy in ESCC and an independent predictor for short disease-specific survival of ESCC patients. Furthermore, the therapeutic efficacy of radiotherapy in vitro and in vivo was substantially increased by knockdown of XRCC3 in ESCC cells. Ectopic overexpression of XRCC3 in both XRCC3-silenced ESCC cells dramatically enhanced ESCC cells' resistance to radiotherapy. Moreover, radiation resistance conferred by XRCC3 was attributed to enhancement of homologous recombination, maintenance of telomere stability, and a reduction of ESCC cell death by radiation-induced apoptosis and mitotic catastrophe. Our data suggest that XRCC3 protects ESCC cells from ionizing radiation-induced death by promoting DNA damage repair and/or enhancing telomere stability. XRCC3 may be a novel radiosensitivity predictor and promising therapeutic target for ESCC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: