Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 655 papers

Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis.

  • Qi Cui‎ et al.
  • Nature communications‎
  • 2016‎

Glioblastomas have been proposed to be maintained by highly tumorigenic glioblastoma stem cells (GSCs) that are resistant to current therapy. Therefore, targeting GSCs is critical for developing effective therapies for glioblastoma. In this study, we identify the regulatory cascade of the nuclear receptor TLX and the DNA hydroxylase Ten eleven translocation 3 (TET3) as a target for human GSCs. We show that knockdown of TLX expression inhibits human GSC tumorigenicity in mice. Treatment of human GSC-grafted mice with viral vector-delivered TLX shRNA or nanovector-delivered TLX siRNA inhibits tumour development and prolongs survival. Moreover, we identify TET3 as a potent tumour suppressor downstream of TLX to regulate the growth and self-renewal in GSCs. This study identifies the TLX-TET3 axis as a potential therapeutic target for glioblastoma.


Evidence of Chinese herbal medicine Duhuo Jisheng decoction for knee osteoarthritis: a systematic review of randomised clinical trials.

  • Wenming Zhang‎ et al.
  • BMJ open‎
  • 2016‎

Duhuo Jisheng decoction (DJD) is considered beneficial for controlling knee osteoarthritis (KOA)-related symptoms in some Asian countries. This review compiles the evidence from randomised clinical trials and quantifies the effects of DJD on KOA.


A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

  • Xiaoli Sun‎ et al.
  • PloS one‎
  • 2015‎

It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.


Gab2 facilitates epithelial-to-mesenchymal transition via the MEK/ERK/MMP signaling in colorectal cancer.

  • Chenbo Ding‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2016‎

Grb2-associated binder 2 (Gab2), a scaffolding adaptor protein, has recently been implicated in cancer progression. However, the role of Gab2 in the progression and metastasis of colorectal cancer (CRC) remains unclear.


A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis.

  • Lei Cao‎ et al.
  • BMC plant biology‎
  • 2016‎

Wild soybean (Glycine soja) is a highly adaptive plant species which can grow well in saline-alkaline soils. In soybean genome, there exist about 140 HD-Zip (Homeodomain-leucine Zipper) genes. HD-Zip transcription factor family is one of the largest plant specific superfamilies and plays important roles in response to abiotic stresses. Although HD-Zip transcription factors have been broadly reported to be involved in plant resistance to abiotic stresses like salt and drought, their roles in response to bicarbonate stress is largely unknown.


PKM2 phosphorylates MLC2 and regulates cytokinesis of tumour cells.

  • Yuhui Jiang‎ et al.
  • Nature communications‎
  • 2014‎

Pyruvate kinase M2 (PKM2) is expressed at high levels during embryonic development and tumour progression and is important for cell growth. However, it is not known whether it directly controls cell division. Here, we found that Aurora B phosphorylates PKM2, but not PKM1, at T45; this phosphorylation is required for PKM2's localization and interaction with myosin light chain 2 (MLC2) in the contractile ring region of mitotic cells during cytokinesis. PKM2 phosphorylates MLC2 at Y118, which primes the binding of ROCK2 to MLC2 and subsequent ROCK2-dependent MLC2 S15 phosphorylation. PKM2-regulated MLC2 phosphorylation, which is greatly enhanced by EGF stimulation or EGFRvIII, K-Ras G12V and B-Raf V600E mutant expression, plays a pivotal role in cytokinesis, cell proliferation and brain tumour development. These findings underscore the instrumental function of PKM2 in oncogenic EGFR-, K-Ras- and B-Raf-regulated cytokinesis and tumorigenesis.


A disordered region in the EvpP protein from the type VI secretion system of Edwardsiella tarda is essential for EvpC binding.

  • Wentao Hu‎ et al.
  • PloS one‎
  • 2014‎

The type VI secretion system (T6SS) of pathogenic bacteria plays important roles in both virulence and inter-bacterial competitions. The effectors of T6SS are presumed to be transported either by attaching to the tip protein or by interacting with HcpI (haemolysin corregulated protein 1). In Edwardsiella tarda PPD130/91, the T6SS secreted protein EvpP (E. tarda virulent protein P) is found to be essential for virulence and directly interacts with EvpC (Hcp-like), suggesting that it could be a potential effector. Using limited protease digestion, nuclear magnetic resonance heteronuclear Nuclear Overhauser Effects, and hydrogen-deuterium exchange mass spectrometry, we confirmed that the dimeric EvpP (40 kDa) contains a substantial proportion (40%) of disordered regions but still maintains an ordered and folded core domain. We show that an N-terminal, 10-kDa, protease-resistant fragment in EvpP connects to a shorter, 4-kDa protease-resistant fragment through a highly flexible region, which is followed by another disordered region at the C-terminus. Within this C-terminal disordered region, residues Pro143 to Ile168 are essential for its interaction with EvpC. Unlike the highly unfolded T3SS effector, which has a lower molecular weight and is maintained in an unfolded conformation with a dedicated chaperone, the T6SS effector seems to be relatively larger, folded but partially disordered and uses HcpI as a chaperone.


A critical role of CDKN3 in Bcr-Abl-mediated tumorigenesis.

  • Qinghuang Chen‎ et al.
  • PloS one‎
  • 2014‎

CDKN3 (cyclin-dependent kinase inhibitor 3), a dual specificity protein phosphatase, dephosphorylates cyclin-dependent kinases (CDKs) and thus functions as a key negative regulator of cell cycle progression. Deregulation or mutations of CDNK3 have been implicated in various cancers. However, the role of CDKN3 in Bcr-Abl-mediated chronic myelogenous leukemia (CML) remains unknown. Here we found that CDKN3 acts as a tumor suppressor in Bcr-Abl-mediated leukemogenesis. Overexpression of CDKN3 sensitized the K562 leukemic cells to imanitib-induced apoptosis and dramatically inhibited K562 xenografted tumor growth in nude mouse model. Ectopic expression of CDKN3 significantly reduced the efficiency of Bcr-Abl-mediated transformation of FDCP1 cells to growth factor independence. In contrast, depletion of CDKN3 expression conferred resistance to imatinib-induced apoptosis in the leukemic cells and accelerated the growth of xenograph leukemia in mice. In addition, we found that CDKN3 mutant (CDKN3-C140S) devoid of the phosphatase activity failed to affect the K562 leukemic cell survival and xenografted tumor growth, suggesting that the phosphatase of CDKN3 was required for its tumor suppressor function. Furthermore, we observed that overexpression of CDKN3 reduced the leukemic cell survival by dephosphorylating CDK2, thereby inhibiting CDK2-dependent XIAP expression. Moreover, overexpression of CDKN3 delayed G1/S transition in K562 leukemic cells. Our results highlight the importance of CDKN3 in Bcr-Abl-mediated leukemogenesis, and provide new insights into diagnostics and therapeutics of the leukemia.


Creation of a free, Internet-accessible database: the Multiple Target Ligand Database.

  • Chao Chen‎ et al.
  • Journal of cheminformatics‎
  • 2015‎

Polypharmacology plays an important part in drug discovery, and remains a major challenge in drug development. Identification of the underlying polypharmacology of a drug, as well as development of polypharmacological drugs, have become important issues in the pharmaceutical industry and academia.


Natural alleles of GLA for grain length and awn development were differently domesticated in rice subspecies japonica and indica.

  • Yanpei Zhang‎ et al.
  • Plant biotechnology journal‎
  • 2019‎

Rice (Oryza sativa L.) cultivars harbour morphological and physiological traits different from those of wild rice (O. rufipogon Griff.), but the molecular mechanisms underlying domestication remain controversial. Here, we show that awn and long grain traits in the near-isogenic NIL-GLA are separately controlled by variations within the GLA (Grain Length and Awn Development) gene, a new allele of GAD1/RAE2, which encodes one member of the EFPL (epidermal patterning factor-like protein) family. Haplotype analyses and transgenic studies revealed that InDel1 (variation for grain length, VGL) in the promoter region of GLA (GLAVGL ) increases grain length by promoting transcription of GLA. Absence of InDel3 (variation for awn formation, VA) in the coding region (CDS) of GLA (GLAva ) results in short awn or no awn phenotypes. Analyses of minimum spanning trees and introgression regions demonstrated that An-1, an important gene for awn formation, was preferentially domesticated and its mutation to an-1 was followed by GLA and An-2. Gene flow then occurred between the evolved japonica and indica populations. Quality analysis showed that GLA causes poor grain quality. During genetic improvement, awnlessness was selected in ssp. indica, whereas short-grained and awnless phenotypes with good quality were selected in japonica. Our findings facilitate an understanding of rice domestication and provide a favourable allele for rice breeding.


Lowering iron level protects against bone loss in focally irradiated and contralateral femurs through distinct mechanisms.

  • Jian Zhang‎ et al.
  • Bone‎
  • 2019‎

Radiation therapy leads to increased risk of late-onset fragility and bone fracture due to the loss of bone mass. On the other hand, iron overloading causes osteoporosis by enhancing bone resorption. It has been shown that total body irradiation increases iron level, but whether the systemic bone loss is related to the changes in iron level and hepcidin regulation following bone irradiation remains unknown. To investigate the potential link between them, we first created an animal model of radiation-induced systemic bone loss by targeting the mid-shaft femur with a single 2 Gy dose of X-rays. We found that mid-shaft femur focal irradiation led to structural deterioration in the distal region of the trabecular bone with increased osteoclasts surface and expressions of bone resorption markers in both irradiated and contralateral femurs relative to non-irradiated controls. Following irradiation, reduced hepcidin activity of the liver contributed to elevated iron levels in the serum and liver. By injecting hepcidin or deferoxamine (an iron chelator) to reduce iron level, deterioration of trabecular bone microarchitecture in irradiated mice was abrogated. The ability of iron chelation to inhibit radiation-induced osteoclast differentiation was observed in vitro as well. We further showed that ionizing radiation (IR) directly stimulated osteoclast differentiation and bone resorption in bone marrow cells isolated not from contralateral femurs but from directly irradiated femurs. These results suggest that increased iron levels after focal radiation is at least one of the main reasons for systemic bone loss. Furthermore, bone loss in directly irradiated bones is not only due to the elevated iron level, but also from increased osteoclast differentiation. In contrast, the bone loss in the contralateral femurs is mainly due to the elevated iron level induced by IR alone. These novel findings provide proof-of-principle evidence for the use of iron chelation or hepcidin as therapeutic treatments for IR-induced osteoporosis.


Resequencing of cv CRI-12 family reveals haplotype block inheritance and recombination of agronomically important genes in artificial selection.

  • Xuke Lu‎ et al.
  • Plant biotechnology journal‎
  • 2019‎

Although efforts have been taken to exploit diversity for yield and quality improvements, limited progress on using beneficial alleles in domesticated and undomesticated cotton varieties is limited. Given the complexity and limited amount of genomic information since the completion of four cotton genomes, characterizing significant variations and haplotype block inheritance under artificial selection has been challenging. Here we sequenced Gossypium hirsutum L. cv CRI-12 (the cotton variety with the largest acreage in China), its parental cultivars, and progeny cultivars, which were bred by the different institutes in China. In total, 3.3 million SNPs were identified and 118, 126 and 176 genes were remarkably correlated with Verticillium wilt, salinity and drought tolerance in CRI-12, respectively. Transcriptome-wide analyses of gene expression, and functional annotations, have provided support for the identification of genes tied to these tolerances. We totally discovered 58 116 haplotype blocks, among which 23 752 may be inherited and 1029 may be recombined under artificial selection. This survey of genetic diversity identified loci that may have been subject to artificial selection and documented the haplotype block inheritance and recombination, shedding light on the genetic mechanism of artificial selection and guiding breeding efforts for the genetic improvement of cotton.


Low-cost mussel inspired poly(Catechol/Polyamine) modified magnetic nanoparticles as a versatile platform for enhanced activity of immobilized enzyme.

  • Wen Tang‎ et al.
  • International journal of biological macromolecules‎
  • 2019‎

Owing to dopamine's excellent adhesion ability and easy modification, it has been widely applied for enzyme immobilization, while the high cost of dopamine and low activity recovery of immobilized enzyme highly impede large-scale application of immobilized enzyme. We herein developed a low-cost and ideal activity recovery enzyme immobilization strategy based on magnetic nanoparticles by replacing dopamine with cheap Catechol/tetraethylene pentamine (CPA) binary system and introducing spacer-arms. In brief, CPA was first polymerized and deposited on the surface of magnetic nanoparticles with a modified mussel-inspired method, and the generated poly(CPA) layer was further functionalized with ethylene glycol diglycidyl ether (EGDE) molecules as spacer-arms for enzyme immobilization. Subsequently, lipases as model enzymes were firmly immobilized on the surface of such amino-epoxy functionalized magnetic materials through ion exchange and covalent attachment with 180.6 mg/g support of loading capacity and 69.2% of activity recovery under the optimized conditions. Furthermore, the immobilized lipase exhibited the improved tolerance rang of pH, temperature and storage stability as well as excellent reusability. Most strikingly, the theoretical simulation and secondary structure analysis of immobilized lipase revealed that the biocompatible microenvironment and flexible tethering at interface could effectively improve performance of the immobilized enzyme and stability. Thus, this novel immobilized enzyme strategy will open up a new perspective for the development of enzyme immobilization and lower the cost of immobilized enzyme in large-scale industrial application.


miRNA-338-3p/CDK4 signaling pathway suppressed hepatic stellate cell activation and proliferation.

  • Bensong Duan‎ et al.
  • BMC gastroenterology‎
  • 2017‎

Activated hepatic stellate cell (HSC) is the main fibrogenic cell type in the injured liver. miRNA plays an important role in activation and proliferation of HSC.


A Novel Dielectric Tomography System for In-Situ Tracking Three-Dimensional Soil Water Dynamics.

  • Song Yu‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2018‎

In this study, we developed a novel dielectric tomography system for in-situ tracking three-dimensional (3D) soil water dynamics. The system was designed to control a single dielectric tube sensor that automatically lowered in a PVC tube array installed in-situ to determine the water content of a soil profile, which eliminated probe-to-probe uncertainties and labor costs. Two tests for evaluating the novel system were conducted (i) to analyze and correct the positional error of the probe due to out-of-step errors of stepper motors, and (ii) to track and visualize 3D soil water temporal variations in a soil tank with heterogenetic bulk densities and initial water contents under drip irrigation. The results show that the positioning correcting algorithm combined with starting point alignment can minimize the positioning error of the probe during the 3D tomography. The single drip emitter test illustrated spatial and temporal variations of soil water content due to heterogeneous soil properties in vertical and horizontal directions around the access tube array. Based on these data, 3D distributions of soil water dynamics were visualized. The developed tomography system has potential application to be extended to the local scale in a greenhouse or the large scale in an agricultural field. Future research should explore the performance for agricultural crop irrigation or for modeling and validating soil water flow or hydrological process under either steady state or non-steady state condition.


Genome-Wide Analysis of Glycine soja Response Regulator GsRR Genes Under Alkali and Salt Stresses.

  • Chao Chen‎ et al.
  • Frontiers in plant science‎
  • 2018‎

Soil salt-alkalization is a dramatic challenging factor for plant growth. Wild soybean (Glycine soja) exhibits a favorable trait of superior tolerance to salt-alkali stress, and recent discoveries show that response regulator family genes are involved in diverse abiotic stresses. Genomic and transcriptomic analyses of all response regulator genes in wild soybean will provide insight into their function in plant stress response. In this study, we identified and characterized a total of 56 Glycine soja response regulator (GsRR) genes. Phylogenetic analysis suggested that GsRR genes could be classified into five subclasses (A1, A2, B1, B2, and C). We further investigated the chromosome locations, gene duplications and conserved domains of the GsRRs. Furthermore, the clustering analysis of GsRR transcript profiles revealed five different expression patterns under alkali stress. The A1 and A2 subclasses display significantly higher transcriptional levels than the B subclass. In addition, quantitative real-time PCR results verified that the GsRR genes were also significantly influenced by salt stress. Notably, GsRR2a in the A1 subclass showed opposite expression patterns under salt stress comparing with alkali stress. Moreover, overexpression of GsRR2a in Arabidopsis significantly improved the tolerance to alkali stress, but not salt stress. These results suggest the important roles of GsRR genes in response to salt and alkaline stresses, and also provide valuable clues for further functional characterization of GsRR family genes.


Bufalin inhibits gastric cancer invasion and metastasis by down-regulating Wnt/ASCL2 expression.

  • Jie Wang‎ et al.
  • Oncotarget‎
  • 2018‎

Achaete-scute-like 2 (ASCL2) is a transcription factor containing a basic helix-loop-helix (bHLH) domain and is a downstream target of Wnt signaling in intestinal stem cells. Bufalin is the primary active ingredient in Chan Su, a traditional Chinese medicine obtained from the skin and parotid venom glands of toads. The purpose of this study was to research the anti-invasion and anti-metastasis activity of bufalin in gastric cancer and to identify the potential mechanism. Bufalin inhibited gastric cancer cell invasion and metastasis, suppressed cancer cell colony formation, and inhibited the growth of subcutaneous xenografted tumors in nude mice. Furthermore, bufalin inhibited ASCL2 expression and down-regulated the expression of invasion-related genes such as MMP2, MMP9, and vimentin, thereby suppressing epithelial-mesenchymal transition (EMT) in gastric cancer. A Wnt signaling inhibitor (XAV939) down-regulated invasion and the expression of ASCL2, β-catenin, and vimentin but up-regulated E-cadherin expression. In nude mice, bufalin inhibited the tumorigenic behavior of gastric cancer cells, induced cancer cell apoptosis, and regulated invasion-related gene expression. Together, our results suggest that bufalin arrests invasion and metastasis and that its mechanism of action may involve down-regulating Wnt/ASCL2 expression.


Role of the E2 Hypervariable Region (HVR1) in the Immunogenicity of a Recombinant Hepatitis C Virus Vaccine.

  • John L M Law‎ et al.
  • Journal of virology‎
  • 2018‎

Current evidence supports a protective role for virus-neutralizing antibodies in immunity against hepatitis C virus (HCV) infection. Many cross-neutralizing monoclonal antibodies have been identified. These antibodies have been shown to provide protection or to clear infection in animal models. Previous clinical trials have shown that a gpE1/gpE2 vaccine can induce antibodies that neutralize the in vitro infectivity of all the major cell culture-derived HCV (HCVcc) genotypes around the world. However, cross-neutralization appeared to favor certain genotypes, with significant but lower neutralization against others. HCV may employ epitope masking to avoid antibody-mediated neutralization. Hypervariable region 1 (HVR1) at the amino terminus of glycoprotein E2 has been shown to restrict access to many neutralizing antibodies. Consistent with this, other groups have reported that recombinant viruses lacking HVR1 are hypersensitive to neutralization. It has been proposed that gpE1/gpE2 lacking this domain could be a better vaccine antigen to induce broadly neutralizing antibodies. In this study, we examined the immunogenicity of recombinant gpE1/gpE2 lacking HVR1 (ΔHVR1). Our results indicate that wild-type (WT) and ΔHVR1 gpE1/gpE2 antigens induced antibodies targeting many well-characterized cross-genotype-neutralizing epitopes. However, while the WT gpE1/gpE2 vaccine can induce cross-genotype protection against various genotypes of HCVcc and/or HCV-pseudotyped virus (HCVpp), antisera from ΔHVR1 gpE1/gpE2-immunized animals exhibited either reduced homologous neutralization activity compared to that of the WT or heterologous neutralization activity similar to that of the WT. These data suggest that ΔHVR1 gpE1/gpE2 is not a superior vaccine antigen. Based on previously reported chimpanzee protection data using WT gpE1/gpE2 and our current findings, we are preparing a combination vaccine including wild-type recombinant gpE1/gpE2 for clinical testing in the future.IMPORTANCE An HCV vaccine is an unmet medical need. Current evidence suggests that neutralizing antibodies play an important role in virus clearance, along with cellular immune responses. Previous clinical data showed that gpE1/gpE2 can effectively induce cross-neutralizing antibodies, although they favor certain genotypes. HCV employs HVR1 within gpE2 to evade host immune control. It has been hypothesized that the removal of this domain would improve the production of cross-neutralizing antibodies. In this study, we compared the immunogenicities of WT and ΔHVR1 gpE1/gpE2 antigens as vaccine candidates. Our results indicate that the ΔHVR1 gpE1/gpE2 antigen confers no advantages in the neutralization of HCV compared with the WT antigen. Previously, we showed that this WT antigen remains the only vaccine candidate to protect chimpanzees from chronic infection, contains multiple cross-neutralizing epitopes, and is well tolerated and immunogenic in humans. The current data support the further clinical development of this vaccine antigen component.


DRAM1 regulates the migration and invasion of hepatoblastoma cells via autophagy-EMT pathway.

  • Chao Chen‎ et al.
  • Oncology letters‎
  • 2018‎

DNA-damage regulated autophagy modulator 1 (DRAM1) is known as a target of TP53-mediated autophagy, and has been reported to promote the migration and invasion abilities of glioblastoma stem cells. However, the precise contribution of DRAM1 to cancer cell invasion and migration, and the underlying mechanisms remain unclear. In the present study, small interfering (si)RNA or short hairpin RNA mediated knockdown of DRAM1 was performed in hepatoblastoma cells and the migration and invasion abilities were detected in vitro and in vivo. To investigate the underlying mechanisms, western blotting and immunofluorescence were used to detect the expression of autophagy-associated proteins and epithelial-mesenchymal-transition (EMT)-associated markers. The results showed that DRAM1 knockdown by specific siRNA abrogated cell autophagy, as well as inhibited the migration and invasion of HepG2 cells in Transwell assays, which may be reversed by rapamycin treatment. In addition, DRAM1 knockdown increased the expression of E-Cadherin while decreased the expression of vimentin in HepG2 cells, which was also be reversed by rapamycin treatment. Taken together, these results suggest that DRAM1 is involved in the regulation of the migration and invasion of HepG2 cells via autophagy-EMT pathway.


Population Genomics Provide Insights into the Evolution and Adaptation of the Eastern Honey Bee (Apis cerana).

  • Chao Chen‎ et al.
  • Molecular biology and evolution‎
  • 2018‎

The mechanisms by which organisms adapt to variable environments are a fundamental question in evolutionary biology and are important to protect important species in response to a changing climate. An interesting candidate to study this question is the honey bee Apis cerana, a keystone pollinator with a wide distribution throughout a large variety of climates, that exhibits rapid dispersal. Here, we resequenced the genome of 180 A. cerana individuals from 18 populations throughout China. Using a population genomics approach, we observed considerable genetic variation in A. cerana. Patterns of genetic differentiation indicate high divergence at the subspecies level, and physical barriers rather than distance are the driving force for population divergence. Estimations of divergence time suggested that the main branches diverged between 300 and 500 Ka. Analyses of the population history revealed a substantial influence of the Earth's climate on the effective population size of A. cerana, as increased population sizes were observed during warmer periods. Further analyses identified candidate genes under natural selection that are potentially related to honey bee cognition, temperature adaptation, and olfactory. Based on our results, A. cerana may have great potential in response to climate change. Our study provides fundamental knowledge of the evolution and adaptation of A. cerana.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: