Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 134 papers

COMPASS server for homology detection: improved statistical accuracy, speed and functionality.

  • Ruslan I Sadreyev‎ et al.
  • Nucleic acids research‎
  • 2009‎

COMPASS is a profile-based method for the detection of remote sequence similarity and the prediction of protein structure. Here we describe a recently improved public web server of COMPASS, http://prodata.swmed.edu/compass. The server features three major developments: (i) improved statistical accuracy; (ii) increased speed from parallel implementation; and (iii) new functional features facilitating structure prediction. These features include visualization tools that allow the user to quickly and effectively analyze specific local structural region predictions suggested by COMPASS alignments. As an application example, we describe the structural, evolutionary and functional analysis of a protein with unknown function that served as a target in the recent CASP8 (Critical Assessment of Techniques for Protein Structure Prediction round 8). URL: http://prodata.swmed.edu/compass.


Fungal and bacterial communities in the rhizosphere of Pinus tabulaeformis related to the restoration of plantations and natural secondary forests in the Loess Plateau, northwest China.

  • Hong-Xia Yu‎ et al.
  • TheScientificWorldJournal‎
  • 2013‎

Chinese pine (Pinus tabulaeformis Carr.) is widely planted for restoration in destroyed ecosystems of the Loess Plateau in China. Although soil microbial communities are important subsurface components of the terrestrial ecosystems, little is known about fungal and bacterial communities in the rhizosphere of planted and natural P. tabulaeformis forests in the region. In this study, fungal and bacterial communities in the rhizosphere of P. tabulaeformis were analyzed by nested PCR-DGGE (denaturing gradient gel electrophoresis). Diversity analysis revealed that the values of the Shannon-Wiener index (H) and the Simpson index (D) of fungal communities were higher in natural secondary forests than in plantations except for the 3-year-old site. Moreover, the values of species richness, H, and D of the bacterial communities were also higher in the former. Totally, 18 fungal and 19 bacterial DGGE band types were successfully retrieved and sequenced. The dominant fungi in the rhizosphere of P. tabulaeformis belonged to the phylum of Basidiomycota, while the dominant bacteria belonged to the phylum of Proteobacteria. Principal component analysis indicated that fungal and bacterial species were more unitary in plantations than in natural secondary forests, and the majority of them were more likely to appear in the latter. Correlation analysis showed no significant correlation between the fungal and bacterial community diversities.


Enhanced itch elicited by capsaicin in a chronic itch model.

  • Guang Yu‎ et al.
  • Molecular pain‎
  • 2016‎

Chronic itch (pruritus) is an important clinical problem. However, the underlying molecular basis has yet to be understood. The Transient Receptor Potential Vanilloid 1 channel is a heat-sensitive cation channel expressed in primary sensory neurons and involved in both thermosensation and pain, but its role in chronic itch remains elusive. Here, we for the first time revealed an increased innervation density of Transient Receptor Potential Vanilloid 1-expressing sensory fibers in the skin afflicted with chronic itch. Further analysis indicated that this phenomenon is due to an expansion of Transient Receptor Potential Vanilloid 1-expressing sensory neurons under chronic itch conditions. As a functional correlates of this neuronal expansion, we observed an enhanced neuronal responsiveness to capsaicin under the dry skin conditions. Importantly, the neuronal hypersensitivity to capsaicin results in itch, rather than pain sensation, suggesting that the up-regulated Transient Receptor Potential Vanilloid 1 underlies the pain-to-itch switch under chronic itchy conditions. The study shows that there are different mechanisms of chronic pain and itching, and Transient Receptor Potential Vanilloid 1 plays an important role in chronic itch.


The Tandem Duplicator Phenotype Is a Prevalent Genome-Wide Cancer Configuration Driven by Distinct Gene Mutations.

  • Francesca Menghi‎ et al.
  • Cancer cell‎
  • 2018‎

The tandem duplicator phenotype (TDP) is a genome-wide instability configuration primarily observed in breast, ovarian, and endometrial carcinomas. Here, we stratify TDP tumors by classifying their tandem duplications (TDs) into three span intervals, with modal values of 11 kb, 231 kb, and 1.7 Mb, respectively. TDPs with ∼11 kb TDs feature loss of TP53 and BRCA1. TDPs with ∼231 kb and ∼1.7 Mb TDs associate with CCNE1 pathway activation and CDK12 disruptions, respectively. We demonstrate that p53 and BRCA1 conjoint abrogation drives TDP induction by generating short-span TDP mammary tumors in genetically modified mice lacking them. Lastly, we show how TDs in TDP tumors disrupt heterogeneous combinations of tumor suppressors and chromatin topologically associating domains while duplicating oncogenes and super-enhancers.


Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma.

  • A Gordon Robertson‎ et al.
  • Cancer cell‎
  • 2017‎

Comprehensive multiplatform analysis of 80 uveal melanomas (UM) identifies four molecularly distinct, clinically relevant subtypes: two associated with poor-prognosis monosomy 3 (M3) and two with better-prognosis disomy 3 (D3). We show that BAP1 loss follows M3 occurrence and correlates with a global DNA methylation state that is distinct from D3-UM. Poor-prognosis M3-UM divide into subsets with divergent genomic aberrations, transcriptional features, and clinical outcomes. We report change-of-function SRSF2 mutations. Within D3-UM, EIF1AX- and SRSF2/SF3B1-mutant tumors have distinct somatic copy number alterations and DNA methylation profiles, providing insight into the biology of these low- versus intermediate-risk clinical mutation subtypes.


GLP-catalyzed H4K16me1 promotes 53BP1 recruitment to permit DNA damage repair and cell survival.

  • Xiaopeng Lu‎ et al.
  • Nucleic acids research‎
  • 2019‎

The binding of p53-binding protein 1 (53BP1) to damaged chromatin is a critical event in non-homologous DNA end joining (NHEJ)-mediated DNA damage repair. Although several molecular pathways explaining how 53BP1 binds damaged chromatin have been described, the precise underlying mechanisms are still unclear. Here we report that a newly identified H4K16 monomethylation (H4K16me1) mark is involved in 53BP1 binding activity in the DNA damage response (DDR). During the DDR, H4K16me1 rapidly increases as a result of catalyzation by the histone methyltransferase G9a-like protein (GLP). H4K16me1 shows an increased interaction level with 53BP1, which is important for the timely recruitment of 53BP1 to DNA double-strand breaks. Differing from H4K16 acetylation, H4K16me1 enhances the 53BP1-H4K20me2 interaction at damaged chromatin. Consistently, GLP knockdown markedly attenuates 53BP1 foci formation, leading to impaired NHEJ-mediated repair and decreased cell survival. Together, these data support a novel axis of the DNA damage repair pathway based on H4K16me1 catalysis by GLP, which promotes 53BP1 recruitment to permit NHEJ-mediated DNA damage repair.


Bacterial Communities of the Canola Rhizosphere: Network Analysis Reveals a Core Bacterium Shaping Microbial Interactions.

  • Jean-Baptiste Floc'h‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

The rhizosphere hosts a complex web of prokaryotes interacting with one another that may modulate crucial functions related to plant growth and health. Identifying the key factors structuring the prokaryotic community of the plant rhizosphere is a necessary step toward the enhancement of plant production and crop yield with beneficial associative microorganisms. We used a long-term field experiment conducted at three locations in the Canadian prairies to verify that: (1) the level of cropping system diversity influences the α- and β-diversity of the prokaryotic community of canola (Brassica napus) rhizosphere; (2) the canola rhizosphere community has a stable prokaryotic core; and (3) some highly connected taxa of this community fit the description of hub-taxa. We sampled the rhizosphere of canola grown in monoculture, in a 2-phase rotation (canola-wheat), in a 3-phase rotation (pea-barley-canola), and in a highly diversified 6-phase rotation, five and eight years after cropping system establishment. We detected only one core bacterial Amplicon Sequence Variant (ASV) in the prokaryotic component of the microbiota of canola rhizosphere, a hub taxon identified as cf. Pseudarthrobacter sp. This ASV was also the only hub taxon found in the networks of interactions present in both years and at all three sites. We highlight a cohort of bacteria and archaea that were always connected with the core taxon in the network analyses.


Similar Arbuscular Mycorrhizal Fungal Communities in 31 Durum Wheat Cultivars (Triticum turgidum L. var. durum) Under Field Conditions in Eastern Canada.

  • Franck Stefani‎ et al.
  • Frontiers in plant science‎
  • 2020‎

Wheat is among the important crops harnessed by humans whose breeding efforts resulted in a diversity of genotypes with contrasting traits. The goal of this study was to determine whether different old and new cultivars of durum wheat (Triticum turgidum L. var. durum) recruit specific arbuscular mycorrhizal (AM) fungal communities from indigenous AM fungal populations of soil under field conditions. A historical set of five landraces and 26 durum wheat cultivars were field cultivated in a humid climate in Eastern Canada, under phosphorus-limiting conditions. To characterize the community of AMF inhabiting bulk soil, rhizosphere, and roots, MiSeq amplicon sequencing targeting the 18S rRNA gene (SSU) was performed on total DNAs using a nested PCR approach. Mycorrhizal colonization was estimated using root staining and microscope observations. A total of 317 amplicon sequence variants (ASVs) were identified as belonging to Glomeromycota. The core AM fungal community (i.e., ASVs present in > 50% of the samples) in the soil, rhizosphere, and root included 29, 30, and 29 ASVs, respectively. ASVs from the genera Funneliformis, Claroideoglomus, and Rhizophagus represented 37%, 18.6%, and 14.7% of the sequences recovered in the rarefied dataset, respectively. The two most abundant ASVs had sequence homology with the 18S sequences from well-identified herbarium cultures of Funneliformis mosseae BEG12 and Rhizophagus irregularis DAOM 197198, while the third most abundant ASV was assigned to the genus Paraglomus. Cultivars showed no significant difference of the percentage of root colonization ranging from 57.8% in Arnautka to 84.0% in AC Navigator. Cultivars were generally associated with similar soil, rhizosphere, and root communities, but the abundance of F. mosseae, R. irregularis, and Claroideoglomus sp. sequences varied in Eurostar, Golden Ball, and Wakooma. Although these results were obtained in one field trial using a non-restricted pool of durum wheat and at the time of sampling, that may have filtered the community in biotopes. The low genetic variation between durum wheat cultivars for the diversity of AM symbiosis at the species level suggests breeding resources need not be committed to leveraging plant selective influence through the use of traditional methods for genotype development.


The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest.

  • Claude Rispe‎ et al.
  • BMC biology‎
  • 2020‎

Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture.


Serum KIAA1199 is an advanced-stage prognostic biomarker and metastatic oncogene in cholangiocarcinoma.

  • Xiangyu Zhai‎ et al.
  • Aging‎
  • 2020‎

Cell proliferation and migration are the determinants of malignant tumor progression, and a better understanding of related genes will lead to the identification of new targets aimed at preventing the spread of cancer. Some studies have shown that KIAA1199 (CEMIP) is a transmembrane protein expressed in many types of noncancerous cells and cancer cells. However, the potential role of KIAA1199 in the progression of cholangiocarcinoma (CCA) remains unclear.


Chalcone Isomerase a Key Enzyme for Anthocyanin Biosynthesis in Ophiorrhiza japonica.

  • Wei Sun‎ et al.
  • Frontiers in plant science‎
  • 2019‎

Anthocyanins are distributed ubiquitously to terrestrial plants and chalcone isomerase (CHI) catalyzes the stereospecific isomerization of chalcones - a committed step in the anthocyanin biosynthesis pathway. In this study, one gene encoding CHI was isolated from Ophiorrhiza japonica and designated as OjCHI. Multiple sequence alignments and phylogenetic analysis revealed that OjCHI had the conserved CHI active site residues and was classified into type I CHI group. In order to better understand the mechanisms of anthocyanin synthesis in O. japonica, integrative analysis between metabolites and OjCHI expression was conducted. The results showed OjCHI expression matched the accumulation patterns of anthocyanins not only in different tissues but also during the flower developmental stages, suggesting the potential roles of OjCHI in the biosynthesis of anthocyanin. Then biochemical analysis indicated that recombinant OjCHI protein exhibited a typical type I CHI activity which catalyzed the production of naringenin from naringenin chalcone. Moreover, expressing OjCHI in Arabidopsis tt5 mutant restored the anthocyanins and flavonols phenotype of hypocotyl, cotyledon and seed coat, indicating its function as a chalcone isomerase in vivo. In summary, our findings reveal the in vitro as well as in vivo functions of OjCHI and provide a resource to understand the mechanism of anthocyanin biosynthesis in O. japonica.


CBP mediated DOT1L acetylation confers DOT1L stability and promotes cancer metastasis.

  • Chaohua Liu‎ et al.
  • Theranostics‎
  • 2020‎

Background and Aim: DOT1L regulates various genes involved in cancer onset and progression by catalyzing H3K79 methylation, but how DOT1L activity itself is regulated is unclear. Here, we aimed to identify specific DOT1L post-translational modifications that might regulate DOT1L activity and thus impact on colorectal cancer (CRC) progression. Methods: We conducted affinity purification and mass spectrometry to explore DOT1L post-translational modifications. We then established transwell migration and invasion assays to specifically investigate the role of DOT1L(K358) acetylation on CRC cellular behavior in vitro and a bioluminescence imaging approach to determine the role of DOT1L(K358) acetylation in CRC metastasis in vivo. We performed chromatin immunoprecipitation to identify DOT1L acetylation-controlled target genes. Finally, we used immunohistochemical staining of human tissue arrays to examine the relevance of DOT1L(K358) acetylation in CRC progression and metastasis and the correlation between DOT1L acetylation and CBP. Results: We found that CBP mediates DOT1L K358 acetylation in human colon cancer cells and positively correlates with CRC stages. Mechanistically, DOT1L acetylation confers DOT1L stability by preventing the binding of RNF8 to DOT1L and subsequent proteasomal degradation, but does not affect its enzyme activity. Once stabilized, DOT1L can catalyze the H3K79 methylation of genes involved in epithelial-mesenchymal transition, including SNAIL and ZEB1. An acetylation mimic DOT1L mutant (Q358) could induce a cancer-like phenotype in vitro, characterized by metastasis and invasion. Finally, DOT1L(K358) acetylation correlated with CRC progression and a poor survival rate as well as with high CBP expression. Conclusions: DOT1L acetylation by CBP drives CRC progression and metastasis. Targeting DOT1L deacetylation signaling is a potential therapeutic strategy for DOT1L-driven cancers.


POH1 deubiquitinates pro-interleukin-1β and restricts inflammasome activity.

  • Li Zhang‎ et al.
  • Nature communications‎
  • 2018‎

Inflammasome activation is essential for host defence against invading pathogens, but is also involved in various forms of inflammatory diseases. The processes that control inflammasome activity are thus important for averting excessive immune responses and tissue damage. Here we show that the deubiquitinase POH1 negatively regulates the immune response triggered by inflammasome activation. POH1 deficiency in macrophages enhances mature IL-1β production without significant alterations in inflammasome priming and ASC-caspase-1 activation. In WT macrophages, POH1 interacts with and deubiquitinates pro-IL-1β by decreasing the K63-linked polyubiquitin chains, as well as decreases the efficacy of pro-IL-1β cleavage. Furthermore, myeloid cell-specific deletion of POH1 aggravates lipopolysaccharide-induced systemic inflammation and alum-induced peritonitis inflammatory responses in vivo. Our study thereby reveals that POH1-mediated deubiquitination of pro-IL-1β is an important regulatory event that restrains inflammatory responses for the maintenance of immune homeostasis.


Lithium systematics in global arc magmas and the importance of crustal thickening for lithium enrichment.

  • Chen Chen‎ et al.
  • Nature communications‎
  • 2020‎

Much of the world's Li deposits occurs as basinal brines in magmatic orogens, particularly in continental volcanic arcs. However, the exact origin of Li enrichment in arc magmatic systems is not clear. Here, we show that, globally, primitive arc magmas have Li contents and Li/Y ratios similar to mid-ocean ridge basalts, indicating that the subducting slab has limited contribution to Li enrichment in arc magmas. Instead, we find that Li enrichment is enhanced by lower degrees of sub-arc mantle melting and higher extents of intracrustal differentiation. These enrichment effects are favored in arcs with thick crust, which explains why magmatism and differentiation in continental arcs, like the Andes, reach greater Li contents than their island arc counterparts. Weathering of these enriched source rocks mobilizes and transports such Li into the hydrologic system, ultimately developing Li brines with the combination of arid climate and the presence of landlocked extensional basins in thickened orogenic settings.


The complete chloroplast genome sequence of Styrax wuyuanensis S. M. Hwang (Styracaceae) from Jiangxi Province, China.

  • Rui Zhang‎ et al.
  • Mitochondrial DNA. Part B, Resources‎
  • 2021‎

Styrax wuyuanensis S. M. Hwang is an endemic species distributed in China. In this study, we characterized its complete chloroplast genome. The circular genome of S. wuyuanensis is 157,969 bp in length, and includes two inverted repeat (IRa and IRb) regions of 25,954 bp in length separated by a large single copy (LSC) region of 87,575 bp and a small single copy (SSC) region of 18,486 bp. The total GC content of the S. wuyuanensis chloroplast genome is 37.0%, and a total of 132 functional genes are encoded, including 87 protein-coding genes, 37 tRNA, and eight rRNA. The phylogenetic analysis has shown that S. wuyuanensis is positioned in the Styracaceae clade, as a sister taxon to S. faberi and S. fortunei, confirming the close relationship of S. wuyuanensis with the latter two species.


Thermal state and evolving geodynamic regimes of the Meso- to Neoarchean North China Craton.

  • Guozheng Sun‎ et al.
  • Nature communications‎
  • 2021‎

Constraining thickness and geothermal gradient of Archean continental crust are crucial to understanding geodynamic regimes of the early Earth. Archean crust-sourced tonalitic-trondhjemitic-granodioritic gneisses are ideal lithologies for reconstructing the thermal state of early continental crust. Integrating experimental results with petrochemical data from the Eastern Block of the North China Craton allows us to establish temporal-spatial variations in thickness, geothermal gradient and basal heat flow across the block, which we relate to cooling mantle potential temperature and resultant changing geodynamic regimes from vertical tectonics in the late Mesoarchean (~2.9 Ga) to plate tectonics with hot subduction in the early to late Neoarchean (~2.7-2.5 Ga). Here, we show the transition to a plate tectonic regime plays an important role in the rapid cooling of the mantle, and thickening and strengthening of the lithosphere, which in turn prompted stabilization of the cratonic lithosphere at the end of the Archean.


Using different machine learning models to classify patients into mild and severe cases of COVID-19 based on multivariate blood testing.

  • Rui-Kun Zhang‎ et al.
  • Journal of medical virology‎
  • 2022‎

COVID-19 is a serious respiratory disease. The ever-increasing number of cases is causing heavier loads on the health service system. Using 38 blood test indicators on the first day of admission for the 422 patients diagnosed with COVID-19 (from January 2020 to June 2021) to construct different machine learning (ML) models to classify patients into either mild or severe cases of COVID-19. All models show good performance in the classification between COVID-19 patients into mild and severe disease. The area under the curve (AUC) of the random forest model is 0.89, the AUC of the naive Bayes model is 0.90, the AUC of the support vector machine model is 0.86, and the AUC of the KNN model is 0.78, the AUC of the Logistic regression model is 0.84, and the AUC of the artificial neural network model is 0.87, among which the naive Bayes model has the best performance. Different ML models can classify patients into mild and severe cases based on 38 blood test indicators taken on the first day of admission for patients diagnosed with COVID-19.


Targeting DNA methylation and demethylation in diabetic foot ulcers.

  • Jun-Yu Deng‎ et al.
  • Journal of advanced research‎
  • 2023‎

Poor wound healing is a significant complication of diabetes, which is commonly caused by neuropathy, trauma, deformities, plantar hypertension and peripheral arterial disease. Diabetic foot ulcers (DFU) are difficult to heal, which makes patients susceptible to infections and can ultimately conduce to limb amputation or even death in severe cases. An increasing number of studies have found that epigenetic alterations are strongly associated with poor wound healing in diabetes.


Gender Effects of Dioecious Plant Populus cathayana on Fungal Community and Mycorrhizal Distribution at Different Arid Zones in Qinghai, China.

  • Zhen Li‎ et al.
  • Microorganisms‎
  • 2023‎

Dioecious plants have a wide distribution in nature and gender effect may cause significant alterations in rhizosphere fungal community and soil properties. However, little is known regarding changes in response to dioecious plants. This study aimed to investigate the effects that the dioecious plant, Populus cathayana, and regions of different arid levels have on the fungal community, mycorrhizal distribution, soil enzymatic activities, and nutrient contents. This study characterized fungal and soil factors from the rhizosphere of the dioecious plant Populus cathayana located in the semi-humid regions (Chengguan), semi-arid regions (Sining, Haiyan) and arid regions (Ulan, Chaka). Rhizosphere soil was collected from each site and gender, and the total fungal genomic DNA was extracted. DNA amplicons from fungal ITS region were generated and subjected to Illumina Miseq sequencing. A total of 5 phyla, 28 classes, 92 orders, 170 families, and 380 genuses were observed. AMF distribution peaked at Chaka, which did not conform to the trend. Gender had significant effects on fungal communities: there were obvious differences in fungal OTUs between genders. Alpha diversity raised at first and then decreased. RDA results showed available P, available K, pH, ALP activity, ammonium N, EC, water content and catalase activity were the key contributors in sample areas. Our results suggested potential interaction effects between plant gender and fungal community.


Transcriptional and Mutational Profiling of B-Other Acute Lymphoblastic Leukemia for Improved Diagnostics.

  • Philippe Chouvarine‎ et al.
  • Cancers‎
  • 2021‎

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common cancer in children, and significant progress has been made in diagnostics and the treatment of this disease based on the subtypes of BCP-ALL. However, in a large proportion of cases (B-other), recurrent BCP-ALL-associated genomic alterations remain unidentifiable by current diagnostic procedures. In this study, we performed RNA sequencing and analyzed gene fusions, expression profiles, and mutations in diagnostic samples of 185 children with BCP-ALL. Gene expression clustering showed that a subset of B-other samples partially clusters with some of the known subgroups, particularly DUX4-positive. Mutation analysis coupled with gene expression profiling revealed the presence of distinctive BCP-ALL subgroups, characterized by the presence of mutations in known ALL driver genes, e.g., PAX5 and IKZF1. Moreover, we identified novel fusion partners of lymphoid lineage transcriptional factors ETV6, IKZF1 and PAX5. In addition, we report on low blast count detection thresholds and show that the use of EDTA tubes for sample collection does not have adverse effects on sequencing and downstream analysis. Taken together, our findings demonstrate the applicability of whole-transcriptome sequencing for personalized diagnostics in pediatric ALL, including tentative classification of the B-other cases that are difficult to diagnose using conventional methods.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: