Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Functional analysis of a dihydroflavonol 4-reductase gene in Ophiorrhiza japonica (OjDFR1) reveals its role in the regulation of anthocyanin.

  • Wei Sun‎ et al.
  • PeerJ‎
  • 2021‎

Dihydroflavonol 4-reductase (DFR), a key regulatory enzyme, participated in the biosynthesis of anthocyanins, proanthocyanidins and other flavonoids that essential for plant survival and human health. However, the role of this enzyme in Ophiorrhiza japonica is still unknown. Here, three putative DFR-like genes were firstly isolated from O. japonica. Phylogenetic analysis indicated that OjDFR1 was classified into DFR subgroup, while the rest two were clustered into other NADPH-dependent reductases. Then, functions of the three genes were further characterized. Expression analysis showed that OjDFR1 transcripts had strong correlations with the accumulation pattern of anthocyanin during the flower developmental, whereas other two were not, this suggested the potential roles of OjDFR1 in anthocyanin biosynthesis. Subsequently, all three clones were functionally expressed in Escherichia coli, but confirming that only OjDFR1 encode active DFR proteins that catalyzed the reduction of dihydroflavonols to leucoanthocyanidin. Consistant with the biochemical assay results, overexpressing OjDFR1 in Arabidopsis tt3-1 mutant successfully restored the deficiency of anthocyanin and proanthocyanidin, hinting its function as DFR in planta. Additionally, heterologous expression of OjDFR1 in transgenic tobacco contributed to darker flower color via up-regulating the expressions of endogenous NtANS and NtUFGT, which suggested that OjDFR1 was involved in flower color development. In summary, this study validates the functions of OjDFR1 and expands our understanding of anthocyanin biosynthesis in O. japonica.


Carbon dioxide fluxes in a farmland ecosystem of the southern Chinese Loess Plateau measured using a chamber-based method.

  • Fengru Fang‎ et al.
  • PeerJ‎
  • 2020‎

Farmland accounts for a relatively large fraction of the world's vegetation cover, and the quantification of carbon fluxes over farmland is critical for understanding regional carbon budgets. The carbon cycle of farmland ecosystems has become a focus of global research in the field of carbon dynamics and cycling. The objectives of this study are to monitor the temporal variation in the net ecosystem exchange (NEE) and soil respiration in a spring maize (Zea mays L.) farmland ecosystem of the southern Loess Plateau of China.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: