Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 224 papers

Infarcted myocardium-like stiffness contributes to endothelial progenitor lineage commitment of bone marrow mononuclear cells.

  • Shuning Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2011‎

Optimal timing of cell therapy for myocardial infarction (MI) appears during 5 to 14 days after the infarction. However, the potential mechanism requires further investigation. This work aimed to verify the hypothesis that myocardial stiffness within a propitious time frame might provide a most beneficial physical condition for cell lineage specification in favour of cardiac repair. Serum vascular endothelial growth factor (VEGF) levels and myocardial stiffness of MI mice were consecutively detected. Isolated bone marrow mononuclear cells (BMMNCs) were injected into infarction zone at distinct time-points and cardiac function were measured 2 months after infarction. Polyacrylamide gel substrates with varied stiffness were used to mechanically mimic the infarcted myocardium. BMMNCs were plated on the flexible culture substrates under different concentrations of VEGF. Endothelial progenitor lineage commitment of BMMNCs was verified by immunofluorescent technique and flow cytometry. Our results demonstrated that the optimal timing in terms of improvement of cardiac function occurred during 7 to 14 days after MI, which was consistent with maximized capillary density at this time domains, but not with peak VEGF concentration. Percentage of double-positive cells for DiI-labelled acetylated low-density lipoprotein uptake and fluorescein isothiocyanate (FITC)-UEA-1 (ulex europaeus agglutinin I lectin) binding had no significant differences among the tissue-like stiffness in high concentration VEGF. With the decrease of VEGF concentration, the benefit of 42 kPa stiffness, corresponding to infarcted myocardium at days 7 to 14, gradually occurred and peaked when it was removed from culture medium. Likewise, combined expressions of VEGFR2(+) , CD133(+) and CD45(-) remained the highest level on 42 kPa substrate in conditions of lower concentration VEGF. In conclusion, the optimal efficacy of BMMNCs therapy at 7 to 14 days after MI might result from non-VEGF dependent angiogenesis, and myocardial stiffness at this time domains was more suitable for endothelial progenitor lineage specification of BMMNCs. The results here highlight the need for greater attention to mechanical microenvironments in cell culture and cell therapy.


Survivin: a novel player in insulin cardioprotection against myocardial ischemia/reperfusion injury.

  • Rui Si‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2011‎

Insulin inhibits ischemia/reperfusion-induced myocardial apoptosis through the activation of a survival signaling cascade including the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. However, the down-stream mechanism of PI3K remains elusive. This study is aimed at investigating whether survivin (SVV) plays a role in the insulin-induced anti-apoptotic effect in the ischemic/reperfused (I/R) hearts, and if so, further determining the signaling mechanism involved. Isolated adult rat hearts were subjected to 30 min regional ischemia followed by reperfusion with or without insulin (10(-7)mol/L) at the onset of reperfusion. Reperfusion with insulin inhibited myocardial apoptosis and reduced infarct size, along with significantly up-regulated myocardial SVV expression (5.9±0.3 Group MI/R+Ins vs. 2.1±0.1 Group MI/R, p<0.05) and increased phosphorylations of mTOR and p70S6K compared with I/R group, which was blocked by pretreatment of PI3K inhibitor LY294002. Rapamycin, a specific mTOR inhibitor, did not alter insulin-induced Akt phosphorylation but significantly inhibited SVV expression (from 6.1±0.3 to 3.0±0.15, p<0.05). Moreover, rapamycin blunted insulin-induced anti-apoptosis in the I/R hearts (8.1±0.4% vs. 16.5±1.8%, p<0.05). To further ascertain the role of SVV in insulin-induced cardioprotection, cardiomyocytes were transfected with adenovirus encoding SVV (gain-of-function) or siRNA targeting SVV (loss-of-function). Overexpression of SVV decreased I/R-induced cardiomyocyte apoptosis in vitro, while siRNA targeting SVV significantly blunted the anti-apoptotic effect of insulin. Taken together, these results suggest a novel role of PI3K/Akt/mTOR/SVV signaling in the cardioprotective effect of insulin.


Protective effects of the polyphenol sesamin on allergen-induced T(H)2 responses and airway inflammation in mice.

  • Ching-Huei Lin‎ et al.
  • PloS one‎
  • 2014‎

Allergic asthma is a lifelong airway condition that affects people of all ages. In recent decades, asthma prevalence continues to increase globally, with an estimated number of 250,000 annual deaths attributed to the disease. Although inhaled corticosteroids and β-adrenergic receptor agonists are the primary therapeutic avenues that effectively reduce asthma symptoms, profound side effects may occur in patients with long-term treatments. Therefore, development of new therapeutic strategies is needed as alternative or supplement to current asthma treatments. Sesamin is a natural polyphenolic compound with strong anti-oxidative effects. Several studies have reported that sesamin is effective in preventing hypertension, thrombotic tendency, and neuroinflammation. However, it is still unknown whether sesamin can reduce asthma-induced allergic inflammation and airway hyperresponsiveness (AHR). Our study has revealed that sesamin exhibited significant anti-inflammatory effects in ovalbumin (OVA)-induced murine asthma model. We found that treatments with sesamin after OVA sensitization and challenge significantly decreased expression levels of interleukin-4 (IL-4), IL-5, IL-13, and serum IgE. The numbers of total inflammatory cells and eosinophils in BALF were also reduced in the sesamin-treated animals. Histological results demonstrated that sesamin attenuated OVA-induced eosinophil infiltration, airway goblet cell hyperplasia, mucus occlusion, and MUC5AC expression in the lung tissue. Mice administered with sesamin showed limited increases in AHR compared with mice receiving vehicle after OVA challenge. OVA increased phosphorylation levels of IκB-α and nuclear expression levels of NF-κB, both of which were reversed by sesamin treatments. These data indicate that sesamin is effective in treating allergic asthma responses induced by OVA in mice.


A high performance, cost-effective, open-source microscope for scanning two-photon microscopy that is modular and readily adaptable.

  • David G Rosenegger‎ et al.
  • PloS one‎
  • 2014‎

Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems.


Efficacy of Fluidized Bed Bioartificial Liver in Treating Fulminant Hepatic Failure in Pigs: A Metabolomics Study.

  • Pengcheng Zhou‎ et al.
  • Scientific reports‎
  • 2016‎

Bioartificial livers may act as a promising therapy for fulminant hepatic failure (FHF) with better accessibility and less injury compared to orthotopic liver transplantation. This study aims to evaluate the efficacy and safety of a fluidized bed bioartificial liver (FBBAL) and to explore its therapeutic mechanisms based on metabolomics. FHF was induced by D-galactosamine. Eighteen hours later, pigs were treated with an FBBAL containing encapsulated primary porcine hepatocytes (B group), with a sham FBBAL (containing cell-free capsules, S group) or with only intensive care (C group) for 6 h. Serum samples were assayed using ultra-performance liquid chromatography-mass spectrometry. The difference in survival time (51.6 ± 7.9 h vs. 49.3 ± 6.6 h) and serum metabolome was negligible between the S and C groups, whereas FBBAL treatment significantly prolonged survival time (70.4 ± 11.5h, P < 0.01) and perturbed the serum metabolome, resulting in a marked decrease in phosphatidylcholines, lysophosphatidylcholines, sphingomyelinase, and fatty acids and an increase in conjugated bile acids. The FBBAL exhibits some liver functions and may exert its therapeutic effect by altering the serum metabolome of FHF pigs. Moreover, alginate-chitosan capsules have less influence on serum metabolites. Nevertheless, the alterations were not universally beneficial, revealing that much should be done to improve the FBBAL.


Long non-coding RNA CCAT2 functions as an oncogene in hepatocellular carcinoma, regulating cellular proliferation, migration and apoptosis.

  • Ning Zhou‎ et al.
  • Oncology letters‎
  • 2016‎

An increasing number of studies have demonstrated that the dysregulation of long non-coding RNAs (lncRNAs) may serve an important role in tumor progression. Previous studies have reported that the lncRNA, colon cancer associated transcript 2 (CCAT2), was highly expressed in various tumors. However, the function of CCAT2 in hepatocellular carcinoma (HCC) has not yet been elucidated. The aim of the present study was to identify novel oncogene lncRNAs and investigate their physiological function and mechanism in HCC. Using reverse transcription-quantitative polymerase chain reaction, it was observed that CCAT2 was upregulated in HCC tissues and human HCC cell lines. Furthermore, the impacts of CCAT2 on cell proliferation, migration and apoptosis were analyzed using cell migration, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and enzyme-linked immunosorbent assay analysis respectively. The overexpression of CCAT2 using a synthesized vector significantly promoted cell migration and proliferation, and inhibited apoptosis of HCC cells in vitro. The suppression of CCAT2 expression resulted in opposing effects. To the best of our knowledge, the present study is the first to demonstrate that CCAT2 functions as a oncogene in HCC. Further investigation is required to clarify the molecular mechanisms of this lncRNA in HCC development.


In Situ Characterizing Membrane Lipid Phenotype of Human Lung Cancer Cell Lines Using Mass Spectrometry Profiling.

  • Manwen He‎ et al.
  • Journal of Cancer‎
  • 2016‎

Abnormal lipid metabolisms are closely associated with cancers. In this study, mass spectrometry was employed to in situ investigate the associations of membrane lipid phenotypes of six human lung cancer cell lines (i.e., A549, H1650, H1975 from adenocarcinoma, H157 and H1703 from squamous cell carcinomas, and H460 from a large cell carcinoma) with cancer cell types and finally total 230 lipids were detected. Based these 230 lipids, partial least-square discriminant analysis indicated that fifteen lipids (i.e., PE 18:0_18:1, PI 18:0_20:4, SM 42:2, PE 16:0_20:4, PE 36:2, PC 36:2, SM 34:1, PA 38:3,C18:0, C22:4, PA 34:2, C20:5, C20:2, C18:2, and CerP 36:2) with variable importance in the projection (VIP) value of > 1.0 could be used to differentiate six cancer cell lines with the Predicted Residual Sum of Square (PRESS) score of 0.1974. Positive correlation between polyunsaturated fatty acids (i.e., C20:4, C22:4, C22:5, and C22:6) and polyunsaturated phospholipids (PE 16:0_20:4, PE 38:4, and PI 18:0_20:4) was observed in lung adenocarcinoma cells, especially for H1975 cells. Three adenocarcinoma cell lines (i.e., A549, H1650, and H1975) could be differentiated from other lung cancer cell lines based on the expression of C18:1, C20:1, C20:2, C20:5, and C22:6.


Heat-shock transcription factor 1 is critically involved in the ischaemia-induced cardiac hypertrophy via JAK2/STAT3 pathway.

  • Lingyan Yuan‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Cardiac hypertrophy after myocardial infarction (MI) is an independent risk factor for heart failure. Regression of cardiac hypertrophy has emerged as a promising strategy in the treatment of MI patients. Here, we have been suggested that heat-shock transcription factor 1 (HSF1) is a novel repressor of ischaemia-induced cardiac hypertrophy. Ligation of left anterior descending coronary was used to produce MI in HSF1-deficient heterozygote (KO), HSF1 transgenic (TG) mice and their wild-type (WT) littermates, respectively. Neonatal rat cardiomyocytes (NRCMs) were treated by hypoxia to mimic MI in vitro. The HSF1 phosphorylation was significantly reduced in the infarct border zone of mouse left ventricles (LVs) 1 week after MI and in the hypoxia-treated NRCMs. HSF1 KO mice showed more significant maladaptive cardiac hypertrophy and deteriorated cardiac dysfunction 1 week after MI compared to WT MI mice. Deficiency of HSF1 by siRNA transfection notably increased the hypoxia-induced myocardial hypertrophy in NRCMs. Mechanistically, Janus kinase 2 (JAK2) and its effector, signal transducer and activator of transcription 3 (STAT3) were found to be significantly increased in the LV infarct border zone of WT mice after MI as well as the NRCMs treated by hypoxia. These alterations were more significant in HSF1 KO mice and NRCMs transfected with HSF1 SiRNA. Inversely, HSF1 TG mice showed significantly ameliorated cardiac hypertrophy and heart failure 1 week after LAD ligation compared to their WT littermates. Our data collectively demonstrated that HSF1 is critically involved in the pathological cardiac hypertrophy after MI via modulating JAK2/STAT3 signalling and may constitute a potential therapeutic target for MI patients.


The Potential Therapeutic Role of miR-223 in Bovine Endometritis by Targeting the NLRP3 Inflammasome.

  • Gan Zhao‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Bovine endometritis affects milk production and reproductive performance in dairy cows and causes serious economic loss. The underlying molecular mechanisms or signaling pathways of bovine endometritis remain unclear. In this study, we attempted to determine the expression mechanism of mir-223 in endometritis of dairy cows and evaluate its potential therapeutic value. We first confirmed that there was an increased level of miR-223 in endometritis, and then, an LPS-induced bovine endometrial epithelial cell (BEND) line was used to mimic the inflammatory model in vitro. Our data showed that activation of NF-κB promoted the transcription of miR-223, thus inhibiting activation of the inflammatory mediator NLRP3 and its mediation of IL-1β production to protect against inflammatory damage. Meanwhile, in vivo studies showed that inhibition of mir-223 resulted in an enhanced pathology of mice during LPS-induced endometritis, while overexpression of mir-223 attenuated the inflammatory conditions in the uterus. In summary, our study highlights that miR-223 serves both to constrain the level of NLRP3 activation and to act as a protective factor in the inflammatory response and thus provides a future novel therapeutic modality for active flares in cow endometritis and other inflammatory diseases.


Estrogenic Effects of the Extracts from the Chinese Yam (Dioscorea opposite Thunb.) and Its Effective Compounds in Vitro and in Vivo.

  • Mengnan Zeng‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

The aim of this study was to explore the estrogenic effects of the extracts from Chinese yam and its effective compounds.


Tissue and serum lipidome shows altered lipid composition with diagnostic potential in mycosis fungoides.

  • Chenchen Xu‎ et al.
  • Oncotarget‎
  • 2017‎

Mycosis fungoides (MF) is the most common type of cutaneous T cell lymphoma. In this study, we used matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) to perform lipidomic profiling of 5 MF tissue samples and 44 serum samples (22 from MF patients and 22 from control subjects). Multivariate statistical analysis of the mass spectral data showed that MF tissues had altered levels of seven lipids and MF sera had altered levels of twelve. Among these, six phosphotidylcholines, PC (34:2), PC (34:1), PC (36:3), PC (36:2), PC (32:0), and PC (38:4) and one sphingomyelin, SM (16:0) were altered in both MF tissues and sera. PC (34:2), PC (34:1), PC (36:3), and PC (36:2) levels were increased in both tissues and sera from MF patients, whereas SM (16:0), PC (32:0), and PC (38:4) levels were increased in MF sera but were decreased in MF tissues. We have thus identified multiple lipids that are altered in MF tissues and sera. This suggests serological and tissue lipidomic profiling could be an effective approach to screening for diagnostic biomarkers of MF.


Overexpression of the Ubiquilin-4 (UBQLN4) is Associated with Cell Cycle Arrest and Apoptosis in Human Normal Gastric Epithelial Cell Lines GES-1 Cells by Activation of the ERK Signaling Pathway.

  • Shengkai Huang‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2018‎

BACKGROUND Ubiquilin-4 (UBQLN4) is a component of the ubiquitin-proteasome system and regulates the degradation of many proteins implicated in pathological conditions. The aim of this study was to determine the role of UBQLN4 in regulating the proliferation and survival of the normal gastric epithelial cell line GES-1. MATERIAL AND METHODS We constructed GES-1 lines stably overexpressing UBQLN4 by lentiviral infection. Cell proliferation, apoptosis, and the cell cycle were analyzed using the MTT assay and flow cytometric assays. Phosphorylation of ERK, JNK, p38, and expression of cyclin D1 were detected by western blot analysis. RESULTS Overexpression of UBQLN4 significantly reduced proliferation and induced G2/M phase arrest and apoptosis in GES-1 cells. Moreover, upregulation of UBQLN4 increased the expression of cyclin D1 and phosphorylated ERK, but not JNK or p38. CONCLUSIONS These data suggest that UBQLN4 may induce cell cycle arrest and apoptosis via activation of the ERK pathway and upregulation of cyclin D1 in GES-1 cells.


A novel anti-cancer mechanism of Nutlin-3 through downregulation of Eag1 channel and PI3K/AKT pathway.

  • Xuzhao Wang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Nutlin-3 shows a potent antitumor efficacy through downregulation of the cancerogenic ether à go-go 1 (Eag1) channel. However, the molecular mechanisms responsible for the regulation of Eag1 by Nutlin-3 in cancer cells remain unclear. In this study, we propose a novel anticancer mechanism of Nutlin-3, in which Nutlin-3 acts through the p53-Eag1-PI3K/AKT pathway. We first confirmed that Eag1 was downregulated through the activation of p53 by Nutlin-3. We then revealed that the inhibition of Eag1 electrophysiological function resulted in the decrease of viability, migration and invasion of HeLa cells. It is worth noting that the antitumor effect of Nutlin-3 was abolished in the Eag1 knockdown HeLa cell lines by siRNA. And Nutlin-3 can decrease the cell viability of H8 cells which were stably transfected with Eag1, but has no obvious inhibitory effect on blank H8 cells. Finally, we demonstrated that the decrease in Eag1 channel activity induced by Nutlin-3 treatment exerts anticancer activity by inhibiting the PI3K/AKT pathway. Our study therefore fills the gap between p53 pathway and its cellular function mediated by Eag1, shedding light on the new anti-cancer mechanism of Nutlin-3.


Oridonin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-induced RAW264.7 cells and acute lung injury.

  • Gan Zhao‎ et al.
  • Oncotarget‎
  • 2017‎

Acute lung injury (ALI) is a life-threatening inflammatory disease owing to the lack of specific and effective therapies. Oridonin (Ori) is an active diterpenoid isolated from Rabdosiarubescens (R.rubescens) that has been shown to possess a broadspectrum pharmacological properties including anti-inflammatory, antitumour, antioxidative and neuroregulatory effects. However, its potential protective mechanism in ALI is not well characterized. In this study, we demonstrated that Ori reduces the mortality of mice with ALI induced by a high dose of lipopolysaccharide (LPS), which suggests that Ori has a protective effect on LPS induced ALI. Next, our results confirmed that Ori improves LPS-induced localized pulmonary pathology and decreased the concentration of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in the serum. Nuclear factor-kappa B (NF-κB) is capable of regulating the transcription of pro-inflammatory factors. Interestingly, our results showed that Ori inhibits the expression of TLR4/MyD88 and phosphorylation of NF-κB p65 in lung tissues. To confirm this, we further validated the possible regulatory anti-inflammatory mechanisms of Ori in vitro. LPS-induced RAW264.7 cells, which are widely used as an inflammation model to evaluate the potential protective effect of drugs in vitro, were chosen for this study. Similar results were observed, that is, pre-treatment with Ori, markedly inhibited the nuclear translocation and phosphorylation of NF-κB p65 induced by LPS and subsequently decreased the release of pro-inflammatory cytokines that were increased by LPS. Overall, these results demonstrated that Ori exerts a therapeutic effect on ALI by inhibiting the release of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, through the TLR4/MyD88/NF-κB axis.


The valosin-containing protein is a novel mediator of mitochondrial respiration and cell survival in the heart in vivo.

  • Paulo Lizano‎ et al.
  • Scientific reports‎
  • 2017‎

The valosin-containing protein (VCP) participates in signaling pathways essential for cell homeostasis in multiple tissues, however, its function in the heart in vivo remains unknown. Here we offer the first description of the expression, function and mechanism of action of VCP in the mammalian heart in vivo in both normal and stress conditions. By using a transgenic (TG) mouse with cardiac-specific overexpression (3.5-fold) of VCP, we demonstrate that VCP is a new and powerful mediator of cardiac protection against cell death in vivo, as evidenced by a 50% reduction of infarct size after ischemia/reperfusion versus wild type. We also identify a novel role of VCP in preserving mitochondrial respiration and in preventing the opening of mitochondrial permeability transition pore in cardiac myocytes under stress. In particular, by genetic deletion of inducible isoform of nitric oxide synthase (iNOS) from VCP TG mouse and by pharmacological inhibition of iNOS in isolated cardiac myocytes, we reveal that an increase of expression and activity of iNOS in cardiomyocytes by VCP is an essential mechanistic link of VCP-mediated preservation of mitochondrial function. These data together demonstrate that VCP may represent a novel therapeutic avenue for the prevention of myocardial ischemia.


Identification of Circ_001569 as a Potential Biomarker in the Diagnosis and Prognosis of Pancreatic Cancer.

  • Xianbo Shen‎ et al.
  • Technology in cancer research & treatment‎
  • 2021‎

Emerging evidence has shown that circular RNAs (circRNAs) serve as a promising biomarker in different malignancies. Specifically, circ_001569 has been found to be upregulated in some types of human gastrointestinal cancer. In this study, we aimed to investigate clinical significances, diagnostic and prognostic values of circ_001569 in pancreatic cancer (PC), and identify its effects on the malignant behaviors of PC cells. The expression of circ_001569 was determined in 26 tissues samples and 97 plasma samples from PC patients by qRT-PCR. Relationship between circ_001569 expression and clinicopathological parameters was analyzed by Chi-square test. Diagnostic and prognostic values of circ_001569 were evaluated by ROC curves, Kaplan-Meier curves, and Cox regression analysis. The effects of circ_001569 on the proliferation, migration, invasion, and apoptosis of PC cells were assessed by MTT, wound healing, Transwell invasion assays, and flow cytometric analysis, respectively. Results showed that the expression of circ_001569 was upregulated in tissues and plasma of PC patients. High circ_001569 level was positively correlated with lymphatic metastasis, clinical stage, and venous invasion. Circ_001569 level was an independent prognostic indicator for overall survival rates of PC patients, and patients with high circ_001569 level had a poor prognosis. The AUC of circ_001569 was 0.716 (95% CI: 0.642-0.790) with a sensitivity and specificity of 62.76% and 74.29%, respectively. In vitro, circ_001569 silencing decreased cell proliferation, migration, and invasion, but promoted cell apoptosis of PC cells. Our data demonstrate that high circ_001569 level associates with tumor malignant behaviors, and may serve as a potential biomarker in the diagnosis and prognosis of PC.


Endometrial extracellular matrix rigidity and IFNτ ensure the establishment of early pregnancy through activation of YAP.

  • Tao Zhang‎ et al.
  • Cell proliferation‎
  • 2021‎

In mammals, early pregnancy is a critical vulnerable period during which complications may arise, including pregnancy failure. Establishment of a maternal endometrial acceptance phenotype is a prerequisite for semiheterogeneous embryo implantation, comprising the rate-limiting step of early pregnancy.


A Hydrophobic-Interaction-Based Mechanism Triggers Docking between the SARS-CoV-2 Spike and Angiotensin-Converting Enzyme 2.

  • Jiacheng Li‎ et al.
  • Global challenges (Hoboken, NJ)‎
  • 2020‎

A recent experimental study found that the binding affinity between the cellular receptor human angiotensin-converting enzyme 2 (ACE2) and receptor-binding domain (RBD) in the spike (S) protein of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is more than tenfold higher than that of the original severe acute respiratory syndrome coronavirus (SARS-CoV). However, main chain structures of the SARS-CoV-2 RBD are almost the same with that of the SARS-CoV RBD. Understanding the physical mechanism responsible for the outstanding affinity between the SARS-CoV-2 S and ACE2 is an "urgent challenge" for developing blockers, vaccines, and therapeutic antibodies against the coronavirus disease 2019 (COVID-19) pandemic. Taking into account the mechanisms of hydrophobic interaction, hydration shell, surface tension, and the shielding effect of water molecules, this study reveals a hydrophobic-interaction-based mechanism by means of which SARS-CoV-2 S and ACE2 bind together in an aqueous environment. The hydrophobic interaction between the SARS-CoV-2 S and ACE2 protein is found to be significantly greater than that between SARS-CoV S and ACE2. At the docking site, the hydrophobic portions of the hydrophilic side chains of SARS-CoV-2 S are found to be involved in the hydrophobic interaction between SARS-CoV-2 S and ACE2.


Characteristics of HIV-1 molecular transmission networks and drug resistance among men who have sex with men in Tianjin, China (2014-2018).

  • Minna Zheng‎ et al.
  • Virology journal‎
  • 2020‎

In Tianjin, China, there is a relatively high prevalence of HIV in men who have sex with men (MSM). The number of HIV cases in Tianjin is also increasing. We investigated the HIV molecular transmission network, genetic tropisms, and drug resistance mutations in Tianjin.


The total flavonoids from Selaginella tamariscina (beauv.) Spring improve glucose and lipid metabolism in db/db mice.

  • Xiaolan Wang‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2020‎

This study aimed to investigate the glucose and lipid metabolism improving effect of the total flavonoids from Selaginella tamariscina (Beauv.) Spring (TFST) on db/db mice, and to study its mechanism of action.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: