Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 178 papers

Real-time monitoring of tumor progression and drug responses in a preclinical mouse model of prostate cancer.

  • Peng Xu‎ et al.
  • Oncotarget‎
  • 2016‎

Monitoring disease progression through imaging is playing an increasingly important role in the treatment of prostate cancer. Here, we report that primary mouse prostate cancer cell lines stably expressing luciferase and tumor biomarkers can be monitored through bioluminescence imaging along with assays of serum biomarkers and immune function. Tumorigenesis in immunocompetent C57BL/6 mice can be monitored in by collecting samples from the dorsal flank, dorsolateral prostate, and tail vein to obtain real-time subcutaneous, orthotopic, and metastasis indicators, respectively. We used this technique to confirm the therapeutic effect of immune checkpoint blockade. Our findings suggest the presented indicators are ideally suited for real-time tracking of drug responses, tumor progression and immune function.


Impact of phosphomimetic and non-phosphorylatable mutations of phospholemman on L-type calcium channels gating in HEK 293T cells.

  • Kai Guo‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

Phospholemman (PLM) is an important phosphorylation substrate for protein kinases A and C in the heart. Until now, the association between PLM phosphorylation status and L-type calcium channels (LTCCs) gating has not been fully understood. We investigated the kinetics of LTCCs in HEK 293T cells expressing phosphomimetic or nonphosphorylatable PLM mutants.


Impact of visceral pleural invasion on the association of extent of lymphadenectomy and survival in stage I non-small cell lung cancer.

  • Yang Wo‎ et al.
  • Cancer medicine‎
  • 2019‎

Visceral pleural invasion (VPI) has been identified as an adverse prognostic factor for non-small cell lung cancer (NSCLC). Accurate nodal staging for NSCLC correlates with improved survival, but it is unclear whether tumors with VPI require a more extensive lymph nodes (LNs) dissection to optimize survival. We aimed to evaluate the impact of VPI status on the optimal extent of LNs dissection in stage I NSCLC, using the Surveillance, Epidemiology, and End Results (SEER) database. We identified 9297 surgically treated T1-2aN0M0 NSCLC patients with at least one examined LNs. Propensity score matching was conducted to balance the baseline clinicopathologic characteristics between the VPI group and non-VPI group. Log-rank tests along with Cox proportional hazards regression methods were performed to evaluate the impact of extent of LNs dissection on survival. VPI was correlated with a significant worse survival, but there was no significant difference in survival rate between PL1 and PL2. Patients who underwent sublobectomy had slightly decreased survival than those who underwent lobectomy. Pathologic LNs examination was significantly correlated with survival. Examination of 7-8 LNs and 14-16 LNs conferred the lowest hazard ratio for T1-sized/non-VPI tumors (stage IA) and T1-sized/VPI tumors (stage IB), respectively. The optimal extent of LNs dissection varied by VPI status, with T1-sized/VPI tumors (stage IB) requiring a more extensive LNs dissection than T1-sized/non-VPI tumors (stage IA). These results might provide guidelines for surgical procedure in early stage NSCLC.


Role of obinutuzumab exposure on clinical outcome of follicular lymphoma treated with first-line immunochemotherapy.

  • Candice Jamois‎ et al.
  • British journal of clinical pharmacology‎
  • 2019‎

Obinutuzumab (G) is a humanized type II, Fc-glycoengineered anti-CD20 monoclonal antibody used in various indications, including patients with previously untreated front-line follicular lymphoma. We investigated sources of variability in G exposure and association of progression-free survival (PFS) with average concentration over induction (CmeanIND ) in front-line follicular lymphoma patients treated with G plus chemotherapy (bendamustine, CHOP, or CVP) in the GALLIUM trial.


Pathway crosstalk perturbation network modeling for identification of connectivity changes induced by diabetic neuropathy and pioglitazone.

  • Guillermo de Anda-Jáuregui‎ et al.
  • BMC systems biology‎
  • 2019‎

Aggregation of high-throughput biological data using pathway-based approaches is useful to associate molecular results to functional features related to the studied phenomenon. Biological pathways communicate with one another through the crosstalk phenomenon, forming large networks of interacting processes.


Long noncoding RNA STXBP5-AS1 inhibits cell proliferation, migration, and invasion through inhibiting the PI3K/AKT signaling pathway in gastric cancer cells.

  • Dongzhi Cen‎ et al.
  • OncoTargets and therapy‎
  • 2019‎

Poor prognosis of gastric cancer (GC) has partly been a result of late diagnosis due to nonspecific symptoms in the early stages. The overall survival rate of patients with GC is quite low. Here, we presented the functional role and potential mechanism of long noncoding RNA STXBP5-AS1 in GC.


hsa_circ_0000729, a potential prognostic biomarker in lung adenocarcinoma.

  • Shicheng Li‎ et al.
  • Thoracic cancer‎
  • 2018‎

Increasing evidence has demonstrated that circular RNAs (circRNAs) may play an important role in oncogenesis and tumor development; however, their role in lung adenocarcinoma (LUAD) remains unclear. We identified the differentially expressed circRNAs in LUAD and investigated the potential mechanisms for cancer progression.


PSRC1 overexpression attenuates atherosclerosis progression in apoE-/- mice by modulating cholesterol transportation and inflammation.

  • Kai Guo‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2018‎

Human genome-wide association studies (GWAS) have found that proline/serine-rich coiled-coil 1 (PSRC1) encodes a protein that is associated with serum lipid levels and coronary artery disease. In addition, our previous study showed that the cholesterol efflux capacity is decreased in macrophages following a treatment silencing Psrc1, indicating that PSRC1 has anti-atherosclerotic effects. However, the role of PSRC1 in the development of atherosclerosis is unknown. This study aims to explore the effect of PSRC1 on atherosclerosis and its underlying mechanisms.


A Novel FC116/BC10 Mutation Distinctively Causes Alteration in the Expression of the Genes for Cell Wall Polymer Synthesis in Rice.

  • Mingliang Zhang‎ et al.
  • Frontiers in plant science‎
  • 2016‎

We report isolation and characterization of a fragile culm mutant fc116 that displays reduced mechanical strength caused by decreased cellulose content and altered cell wall structure in rice. Map-based cloning revealed that fc116 was a base substitution mutant (G to A) in a putative beta-1,6-N-acetylglucosaminyltransferase (C2GnT) gene (LOC_Os05g07790, allelic to BC10). This mutation resulted in one amino acid missing within a newly-identified protein motif "R, RXG, RA." The FC116/BC10 gene was lowly but ubiquitously expressed in the all tissues examined across the whole life cycle of rice, and slightly down-regulated during secondary growth. This mutant also exhibited a significant increase in the content of hemicelluloses and lignins, as well as the content of pentoses (xylose and arabinose). But the content of hexoses (glucose, mannose, and galactose) was decreased in both cellulosic and non-cellulosic (pectins and hemicelluloses) fractions of the mutant. Transcriptomic analysis indicated that the typical genes in the fc116 mutant were up-regulated corresponding to xylan biosynthesis, as well as lignin biosynthesis including p-hydroxyphenyl (H), syringyl (S), and guaiacyl (G). Our results indicate that FC116 has universal function in regulation of the cell wall polymers in rice.


The efficacy of baroreflex activation therapy for heart failure: A meta-analysis of randomized controlled trials.

  • Guoqiang Cai‎ et al.
  • Medicine‎
  • 2020‎

The efficacy of baroreflex activation therapy for heart failure is elusive. This meta-analysis aims to evaluate the impact of baroreflex activation therapy on treatment efficacy of heart failure.


Pharmacokinetics, exposure, efficacy and safety of obinutuzumab in rituximab-refractory follicular lymphoma patients in the GADOLIN phase III study.

  • Ekaterina Gibiansky‎ et al.
  • British journal of clinical pharmacology‎
  • 2019‎

Rituximab is standard care in a number of lymphoma subtypes, including follicular lymphoma (FL), although many patients are resistant to rituximab, or develop resistance with repeated treatment, and a high proportion relapse. Obinutuzumab is a novel anti-CD20 monoclonal antibody with improved efficacy over rituximab. It is approved for previously untreated chronic lymphocytic leukaemia (CLL), and for use with bendamustine in patients with rituximab-relapsed/refractory FL.


The biomarkers of key miRNAs and target genes associated with acute myocardial infarction.

  • Qi Wang‎ et al.
  • PeerJ‎
  • 2020‎

Acute myocardial infarction (AMI) is considered one of the most prominent causes of death from cardiovascular disease worldwide. Knowledge of the molecular mechanisms underlying AMI remains limited. Accurate biomarkers are needed to predict the risk of AMI and would be beneficial for managing the incidence rate. The gold standard for the diagnosis of AMI, the cardiac troponin T (cTnT) assay, requires serial testing, and the timing of measurement with respect to symptoms affects the results. As attractive candidate diagnostic biomarkers in AMI, circulating microRNAs (miRNAs) are easily detectable, generally stable and tissue specific.


Reduced SULT2B1b expression alleviates ox-LDL-induced inflammation by upregulating miR-148-3P via inhibiting the IKKβ/NF-κB pathway in macrophages.

  • Mengzhuo Yin‎ et al.
  • Aging‎
  • 2021‎

Atherosclerosis is a lipid-driven chronic inflammatory disease in which lipid-laden macrophage foam cells lead to inflamed lesions in arteries. Previous studies have proven that sulfotransferase 2B1b (SULT2B1b) has several roles in the regulation of lipid metabolism and the inflammatory response. However, little is known about the functions of SULT2B1b in ox-LDL-induced inflammation in macrophages. In this study, after treatment with either ox-LDL alone or combined with transfection of siRNAs targeting SULT2B1b, IL-6, TNF-α, NF-κB, IKKβ and IκB mRNA and protein expression were determined in Raw264.7 cells by real-time PCR and Western blot, respectively. The proliferative capacity was determined by EdU staining and Cell Counting Kit-8. Our data demonstrated that SULT2B1b knockdown could reduce phosphorylated NF-κB levels and downregulate IKKβ protein levels. Additionally, IκB levels were increased and the proliferation of ox-LDL stimulated cells was inhibited after SULT2B1b silencing. Downregulation of SULT2B1b expression was found to upregulate miR-148a-3p expression by microarray assay, while IKKβ was a miR-148a-3p target gene. Our study suggests that SULT2B1b knockdown could promote miR148a-3p expression and inhibit activation of the IKKβ/NF-κB signalling pathway, which suppressed the inflammatory response in macrophages. Therefore, targeting the SULT2B1b gene might be potentially beneficial for atherosclerosis prevention by decreasing the inflammatory response.


The impact of methodology on the reproducibility and rigor of DNA methylation data.

  • Detlev Boison‎ et al.
  • Scientific reports‎
  • 2022‎

Epigenetic modifications are crucial for normal development and implicated in disease pathogenesis. While epigenetics continues to be a burgeoning research area in neuroscience, unaddressed issues related to data reproducibility across laboratories remain. Separating meaningful experimental changes from background variability is a challenge in epigenomic studies. Here we show that seemingly minor experimental variations, even under normal baseline conditions, can have a significant impact on epigenome outcome measures and data interpretation. We examined genome-wide DNA methylation and gene expression profiles of hippocampal tissues from wild-type rats housed in three independent laboratories using nearly identical conditions. Reduced-representation bisulfite sequencing and RNA-seq respectively identified 3852 differentially methylated and 1075 differentially expressed genes between laboratories, even in the absence of experimental intervention. Difficult-to-match factors such as animal vendors and a subset of husbandry and tissue extraction procedures produced quantifiable variations between wild-type animals across the three laboratories. Our study demonstrates that seemingly minor experimental variations, even under normal baseline conditions, can have a significant impact on epigenome outcome measures and data interpretation. This is particularly meaningful for neurological studies in animal models, in which baseline parameters between experimental groups are difficult to control. To enhance scientific rigor, we conclude that strict adherence to protocols is necessary for the execution and interpretation of epigenetic studies and that protocol-sensitive epigenetic changes, amongst naive animals, may confound experimental results.


Half-Heusler-like compounds with wide continuous compositions and tunable p- to n-type semiconducting thermoelectrics.

  • Zirui Dong‎ et al.
  • Nature communications‎
  • 2022‎

Half-Heusler and full-Heusler compounds were considered as independent phases with a natural composition gap. Here we report the discovery of TiRu1+xSb (x = 0.15 ~ 1.0) solid solution with wide homogeneity range and tunable p- to n-type semiconducting thermoelectrics, which bridges the composition gap between half- and full-Heusler phases. At the high-Ru end, strange glass-like thermal transport behavior with unusually low lattice thermal conductivity (~1.65 Wm-1K-1 at 340 K) is observed for TiRu1.8Sb, being the lowest among reported half-Heusler phases. In the composition range of 0.15 < x < 0.50, TiRu1+xSb shows abnormal semiconducting behaviors because tunning Ru composition results in band structure change and carrier-type variation simultaneously, which seemingly correlates with the localized d electrons. This work reveals the possibility of designing fascinating half-Heusler-like materials by manipulating the tetrahedral site occupancy, and also demonstrates the potential of tuning crystal and electronic structures simultaneously to realize intriguing physical properties.


SMAP is a pipeline for sample matching in proteogenomics.

  • Ling Li‎ et al.
  • Nature communications‎
  • 2022‎

The integration of genomics and proteomics data (proteogenomics) holds the promise of furthering the in-depth understanding of human disease. However, sample mix-up is a pervasive problem in proteogenomics because of the complexity of sample processing. Here, we present a pipeline for Sample Matching in Proteogenomics (SMAP) to verify sample identity and ensure data integrity. SMAP infers sample-dependent protein-coding variants from quantitative mass spectrometry (MS), and aligns the MS-based proteomic samples with genomic samples by two discriminant scores. Theoretical analysis with simulated data indicates that SMAP is capable of uniquely matching proteomic and genomic samples when ≥20% genotypes of individual samples are available. When SMAP was applied to a large-scale dataset generated by the PsychENCODE BrainGVEX project, 54 samples (19%) were corrected. The correction was further confirmed by ribosome profiling and chromatin sequencing (ATAC-seq) data from the same set of samples. Our results demonstrate that SMAP is an effective tool for sample verification in a large-scale MS-based proteogenomics study. SMAP is publicly available at https://github.com/UND-Wanglab/SMAP , and a web-based version can be accessed at https://smap.shinyapps.io/smap/ .


MicroRNA-137 inhibits the inflammatory response and extracellular matrix degradation in lipopolysaccharide-stimulated human nucleus pulposus cells by targeting activin a receptor type I.

  • Bin Yu‎ et al.
  • Bioengineered‎
  • 2022‎

This study aimed to investigate the role played by microRNA (miR)-137 in intervertebral disc degeneration via targeting activin A receptor type I (ACVR1) and the underlying mechanism. Human nucleus pulposus cells were exposed to 10 ng/mL lipopolysaccharide (LPS) to establish an in vitro intervertebral disc degeneration model. ACVR1, extracellular matrix degradation-associated genes (aggrecan and collagen type II) and miR-137 levels were assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting assays. The MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay and flow cytometry were used to evaluate nucleus pulposus cell viability and apoptosis. Additionally, the association between miR-137 and ACVR1 was predicted and verified using bioinformatic software and dual-luciferase reporter assays. Furthermore, the secretion of inflammatory factors was analyzed via enzyme linked immunosorbent assay (ELISA). Our results confirmed that ACVR1 was upregulated in lipopolysaccharide-treated nucleus pulposus cells. Lipopolysaccharide suppressed cell viability, promoted apoptosis, enhanced the secretion of inflammatory factors, and reduced aggrecan and collagen type II expression. However, these results were reversed upon ACVR1 silencing. Our data revealed that ACVR1 directly targets miR-137 and is negatively regulated by miR-137 in nucleus pulposus cells. Additionally, the miR-137 mimic promoted cell growth, reduced cell apoptosis, reduced the secretion of inflammatory cytokines, and accelerated extracellular matrix accumulation in lipopolysaccharide-exposed nucleus pulposus cells. However, ACVR1 plasmid abolished the functions of the miR-137 mimic in lipopolysaccharide-exposed nucleus pulposus cells. Together, these findings indicate that miR-137 suppresses the inflammatory response and extracellular matrix degradation in lipopolysaccharide-treated nucleus pulposus cells by targeting ACVR1.


Type III CRISPR-based RNA editing for programmable control of SARS-CoV-2 and human coronaviruses.

  • Ping Lin‎ et al.
  • Nucleic acids research‎
  • 2022‎

Gene-editing technologies, including the widespread usage of CRISPR endonucleases, have the potential for clinical treatments of various human diseases. Due to the rapid mutations of SARS-CoV-2, specific and effective prevention and treatment by CRISPR toolkits for coronavirus disease 2019 (COVID-19) are urgently needed to control the current pandemic spread. Here, we designed Type III CRISPR endonuclease antivirals for coronaviruses (TEAR-CoV) as a therapeutic to combat SARS-CoV-2 infection. We provided a proof of principle demonstration that TEAR-CoV-based RNA engineering approach leads to RNA-guided transcript degradation both in vitro and in eukaryotic cells, which could be used to broadly target RNA viruses. We report that TEAR-CoV not only cleaves SARS-CoV-2 genome and mRNA transcripts, but also degrades live influenza A virus (IAV), impeding viral replication in cells and in mice. Moreover, bioinformatics screening of gRNAs along RNA sequences reveals that a group of five gRNAs (hCoV-gRNAs) could potentially target 99.98% of human coronaviruses. TEAR-CoV also exerted specific targeting and cleavage of common human coronaviruses. The fast design and broad targeting of TEAR-CoV may represent a versatile antiviral approach for SARS-CoV-2 or potentially other emerging human coronaviruses.


HDAC7 promotes NSCLC proliferation and metastasis via stabilization by deubiquitinase USP10 and activation of β-catenin-FGF18 pathway.

  • Kai Guo‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2022‎

Histone deacetylases (HDACs) play crucial roles in cancers, but the role and mechanism of HDAC7 in NSCLC have not been fully understood.


Repurposable drugs for SARS-CoV-2 and influenza sepsis with scRNA-seq data targeting post-transcription modifications.

  • Zhihan Wang‎ et al.
  • Precision clinical medicine‎
  • 2021‎

Coronavirus disease 2019 (COVID-19) has impacted almost every part of human life worldwide, posing a massive threat to human health. The lack of time for new drug discovery and the urgent need for rapid disease control to reduce mortality have led to a search for quick and effective alternatives to novel therapeutics, for example drug repurposing. To identify potentially repurposable drugs, we employed a systematic approach to mine candidates from U.S. FDA-approved drugs and preclinical small-molecule compounds by integrating gene expression perturbation data for chemicals from the Library of Integrated Network-Based Cellular Signatures project with a publicly available single-cell RNA sequencing dataset from patients with mild and severe COVID-19 (GEO: GSE145926, public data available and accessed on 22 April 2020). We identified 281 FDA-approved drugs that have the potential to be effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, 16 of which are currently undergoing clinical trials to evaluate their efficacy against COVID-19. We experimentally tested and demonstrated the inhibitory effects of tyrphostin-AG-1478 and brefeldin-a, two chemical inhibitors of glycosylation (a post-translational modification) on the replication of the single-stranded ribonucleic acid (ssRNA) virus influenza A virus as well as on the transcription and translation of host cell cytokines and their regulators (IFNs and ISGs). In conclusion, we have identified and experimentally validated repurposable anti-SARS-CoV-2 and IAV drugs using a systems biology approach, which may have the potential for treating these viral infections and their complications (sepsis).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: