Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

Evodiamine Attenuates PDGF-BB-Induced Migration of Rat Vascular Smooth Muscle Cells through Activating PPARγ.

  • Xie Ge‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

The uncontrolled migration of vascular smooth muscle cells (VSMCs) into the intima is a critical process in the development of atherosclerosis. Evodiamine, an indole alkaloid extracted from the Chinese medicine evodia, has been shown to inhibit tumor cell invasion and protect the cardiovascular system, but its effects on VSMCs remain unknown. In the present study, we investigated the inhibitory effects of evodiamine on the platelet-derived growth factor-BB (PDGF-BB)-induced VSMC migration using wound healing and transwell assays, and assessed its role in decreasing the protein levels of matrix metalloproteinases and cell adhesion molecules. More importantly, we found that evodiamine activated the expression and nuclear translocation of peroxisome proliferator-activated receptor γ (PPARγ). Inhibition of PPARγ activity by using its antagonist T0070907 and its specific siRNA oligonucleotides significantly attenuated the inhibitory effects of evodiamine on VSMC migration. Taken together, our results indicate a promising anti-atherogenic effect of evodiamine through attenuation of VSMC migration by activating PPARγ.


Involvement of ABA Responsive SVB Genes in the Regulation of Trichome Formation in Arabidopsis.

  • Saddam Hussain‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Trichome formation in Arabidopsis is regulated by several key regulators, and plants hormones such as gibberellin, salicylic acid, jasmonic acid and cytokinins have been shown to regulate trichome formation by affecting the transcription or activities of the key regulators. We report here the identification of two abscisic acid (ABA) responsive genes, SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB) and SVB2 as trichome formation regulator genes in Arabidopsis. The expression levels of SVB and SVB2 were increased in response to ABA treatment, their expression levels were reduced in the ABA biosynthesis mutant aba1-5, and they have similar expression pattern. In addition to the trichome defects reported previously for the svb single mutant, we found that even though the trichome numbers were largely unaffected in both the svb and svb2 single mutants generate by using CRISPR/Cas9 gene editing, the trichome numbers were greatly reduced in the svb svb2 double mutants. On the other hand, trichome numbers were increased in SVB or SVB2 overexpression plants. RT-PCR results show that the expression of the trichome formation key regulator gene ENHANCER OF GLABRA3 (EGL3) was affected in the svb svb2 double mutants. Our results suggest that SVB and SVB2 are ABA responsive genes, and SVB and SVB2 function redundantly to regulate trichome formation in Arabidopsis.


A Systemic Investigation of Genetic Architecture and Gene Resources Controlling Kernel Size-Related Traits in Maize.

  • Cheng Wang‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Grain yield is the most critical and complex quantitative trait in maize. Kernel length (KL), kernel width (KW), kernel thickness (KT) and hundred-kernel weight (HKW) associated with kernel size are essential components of yield-related traits in maize. With the extensive use of quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) analyses, thousands of QTLs and quantitative trait nucleotides (QTNs) have been discovered for controlling these traits. However, only some of them have been cloned and successfully utilized in breeding programs. In this study, we exhaustively collected reported genes, QTLs and QTNs associated with the four traits, performed cluster identification of QTLs and QTNs, then combined QTL and QTN clusters to detect consensus hotspot regions. In total, 31 hotspots were identified for kernel size-related traits. Their candidate genes were predicted to be related to well-known pathways regulating the kernel developmental process. The identified hotspots can be further explored for fine mapping and candidate gene validation. Finally, we provided a strategy for high yield and quality maize. This study will not only facilitate causal genes cloning, but also guide the breeding practice for maize.


Germline Variants in 32 Cancer-Related Genes among 700 Chinese Breast Cancer Patients by Next-Generation Sequencing: A Clinic-Based, Observational Study.

  • Liu Yang‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Breast cancer (BC) is associated with hereditary components, and some deleterious germline variants have been regarded as effective therapeutic targets. We conducted a clinic-based, observational study to better understand the distribution of deleterious germline variants and assess any clinicopathological predictors related to the variants among Chinese BC patients using a 32 cancer-related genes next-generation sequencing panel. Between November 2020 and February 2022, a total of 700 BC patients were recruited, and 13.1% (92/700) of them carried deleterious germline variants in 15 cancer-related genes, including 37 (37/700, 5.3%) in BRCA2, 29 (29/700, 4.1%) in BRCA1, 8 (8/700, 1.1%) in PALB2, 4 (4/700, 0.6%) in NBN, 3 (3/700, 0.4%) in MRE11A, 3 (3/700, 0.4%) in TP53 and 12 (12/700, 1.7%) in other genes. There were 28 novel variants detected: 5 in BRCA1, 14 in BRCA2, and 9 in non-BRCA1/2 genes. The variants in panel genes, HRR (homologous recombination repair)-related genes, and BRCA1/2 were significantly associated with the following clinicopathological factors: age at the initial diagnosis of BC, family history of any cancer, molecular subtype, Ki-67 index, and hereditary risk. In conclusion, we further expanded the spectrum of germline deleterious variants in Chinese BC patients, and the clinicopathological predictors of variants were identified to facilitate clinical genetic testing and counseling for appropriate individuals.


Immunoglobulin Superfamily Containing Leucine-Rich Repeat (Islr) Participates in IL-6-Mediated Crosstalk between Muscle and Brown Adipose Tissue to Regulate Energy Homeostasis.

  • Chang Liu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Brown adipose tissue (BAT) is functionally linked to skeletal muscle because both tissues originate from a common progenitor cell, but the precise mechanism controlling muscle-to-brown-fat communication is insufficiently understood. This report demonstrates that the immunoglobulin superfamily containing leucine-rich repeat (Islr), a marker of mesenchymal stromal/stem cells, is critical for the control of BAT mitochondrial function and whole-body energy homeostasis. The mice loss of Islr in BAT after cardiotoxin injury resulted in improved mitochondrial function, increased energy expenditure, and enhanced thermogenesis. Importantly, it was found that interleukin-6 (IL-6), as a myokine, participates in this process. Mechanistically, Islr interacts with NADH: Ubiquinone Oxidoreductase Core Subunit S2 (Ndufs2) to regulate IL-6 signaling; consequently, Islr functions as a brake that prevents IL-6 from promoting BAT activity. Together, these findings reveal a previously unrecognized mechanism for muscle-BAT cross talk driven by Islr, Ndufs2, and IL-6 to regulate energy homeostasis, which may be used as a potential therapeutic target in obesity.


Label-Free Quantitative Proteomics Reveal the Mechanisms of Young Wheat (Triticum aestivum L.) Ears' Response to Spring Freezing.

  • Weiling Wang‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Late spring frost is an important meteorological factor threatening the safe production of winter wheat in China. The young ear is the most vulnerable organ of the wheat plant to spring frost. To gain an insight into the mechanisms underpinning young wheat ears' tolerance to freezing, we performed a comparative proteome analysis of wheat varieties Xumai33 (XM33, freezing-sensitive) and Jimai22 (JM22, freezing-tolerant) under normal and freezing conditions using label-free quantitative proteomic techniques during the anther connective tissue formation phase (ACFP). Under freezing stress, 392 and 103 differently expressed proteins (DEPs) were identified in the young ears of XM33 and JM22, respectively, and among these, 30 proteins were common in both varieties. A functional characterization analysis revealed that these DEPs were associated with antioxidant capacity, cell wall modification, protein folding, dehydration response, and plant-pathogen interactions. The young ears of JM22 showed significantly higher expression levels of antioxidant enzymes, heat shock proteins, and dehydrin under normal conditions compared to those of XM33, which might help to prepare the young ears of JM22 for freezing stress. Our results lead to new insights into understanding the mechanisms in young wheat ears' response to freezing stress and provide pivotal potential candidate proteins required for improving young wheat ears' tolerance to spring frost.


Peptidomic Analysis on Mouse Lung Tissue Reveals AGDP as a Potential Bioactive Peptide against Pseudorabies Virus Infection.

  • Yijie Ma‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Pseudorabies virus (PRV) infection could cause severe histopathological damage via releasing multiple factors, including cytokines, peptides, etc. Here, peptidomic results showed that 129 peptides were identified in PRV-infected mouse lungs and were highly involved in the process of PRV infection. The role of one down-regulated biological peptide (designated as AGDP) during PRV infection was investigated. To verify the expression profiles of AGDP in response to PRV infection, the expression level of the precursor protein of AGDP mRNA was significantly decreased in PRV-infected mouse lungs and cells. The synthesized AGDP-treating cells were less susceptible to PRV challenges than the controls, as demonstrated by the decreased virus production and gE expression. AGDP not only inhibited the expression of TNF-α and IL-8 but also appeared to suppress the extracellular release of high-mobility group box 1 (HMGB1) by inhibiting the output of nuclear HMGB1 in cells. AGDP could also inhibit the degradation of IκBα and the phosphorylation levels of P65 after PRV infection. In total, our results revealed many meaningful peptides involved in PRV infection, thereby enhancing the current understanding of the host response to PRV infection, and how AGDP may serve as a promising candidate for developing novel anti-PRV drugs.


Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms.

  • Chia-Ru Chung‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Because of the rapid development of multidrug resistance, conventional antibiotics cannot kill pathogenic bacteria efficiently. New antibiotic treatments such as antimicrobial peptides (AMPs) can provide a possible solution to the antibiotic-resistance crisis. However, the identification of AMPs using experimental methods is expensive and time-consuming. Meanwhile, few studies use amino acid compositions (AACs) and physicochemical properties with different sequence lengths against different organisms to predict AMPs. Therefore, the major purpose of this study is to identify AMPs on seven categories of organisms, including amphibians, humans, fish, insects, plants, bacteria, and mammals. According to the one-rule attribute evaluation, the selected features were used to construct the predictive models based on the random forest algorithm. Compared to the accuracies of iAMP-2L (a web-server for identifying AMPs and their functional types), ADAM (a database of AMP), and MLAMP (a multi-label AMP classifier), the proposed method yielded higher than 92% in predicting AMPs on each category. Additionally, the sensitivities of the proposed models in the prediction of AMPs of seven organisms were higher than that of all other tools. Furthermore, several physicochemical properties (charge, hydrophobicity, polarity, polarizability, secondary structure, normalized van der Waals volume, and solvent accessibility) of AMPs were investigated according to their sequence lengths. As a result, the proposed method is a practical means to complement the existing tools in the characterization and identification of AMPs in different organisms.


Contact/Release Coordinated Antibacterial Cotton Fabrics Coated with N-Halamine and Cationic Antibacterial Agent for Durable Bacteria-Killing Application.

  • Hua Han‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Coating a cationic antibacterial layer on the surface of cotton fabric is an effective strategy to provide it with excellent antibacterial properties and to protect humans from bacterial cross-infection. However, washing with anionic detergent will inactivate the cationic antibacterial coating. Although this problem can be solved by increasing the amount of cationic antibacterial coating, excessive cationic antibacterial coating reduces the drapability of cotton fabric and affects the comfort of wearing it. In this study, a coordinated antibacterial coating strategy based on quaternary ammonium salt and a halogenated amine compound was designed. The results show that the antibacterial effect of the modified cotton fabric was significantly improved. In addition, after mechanically washing the fabric 50 times in the presence of anionic detergent, the antibacterial effect against Staphylococcus aureus and Escherichia coli was still more than 95%. Furthermore, the softness of the obtained cotton fabric showed little change compared with the untreated cotton fabric. This easy-to-implement and cost-effective approach, combined with the cationic contact and the release effect of antibacterial agents, can endow cotton textiles with durable antibacterial properties and excellent wearability.


Functional Study of PgGRAS68-01 Gene Involved in the Regulation of Ginsenoside Biosynthesis in Panax ginseng.

  • Chang Liu‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Ginseng (Panax ginseng C. A. Meyer) is a perennial herb from the genus Panax in the family Araliaceae. It is famous in China and abroad. The biosynthesis of ginsenosides is controlled by structural genes and regulated by transcription factors. GRAS transcription factors are widely found in plants. They can be used as tools to modify plant metabolic pathways by interacting with promoters or regulatory elements of target genes to regulate the expression of target genes, thereby activating the synergistic interaction of multiple genes in metabolic pathways and effectively improving the accumulation of secondary metabolites. However, there are no reports on the involvement of the GRAS gene family in ginsenoside biosynthesis. In this study, the GRAS gene family was located on chromosome 24 pairs in ginseng. Tandem replication and fragment replication also played a key role in the expansion of the GRAS gene family. The PgGRAS68-01 gene closely related to ginsenoside biosynthesis was screened out, and the sequence and expression pattern of the gene were analyzed. The results showed that the expression of PgGRAS68-01 gene was spatio-temporal specific. The full-length sequence of PgGRAS68-01 gene was cloned, and the overexpression vector pBI121-PgGRAS68-01 was constructed. The ginseng seedlings were transformed by Agrobacterium rhifaciens-mediated method. The saponin content in the single root of positive hair root was detected, and the inhibitory role of PgGRAS68-01 in ginsenoside synthesis is reported.


Inflammatory Response and Exosome Biogenesis of Choroid Plexus Organoids Derived from Human Pluripotent Stem Cells.

  • Laureana Muok‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The choroid plexus (ChP) is a complex structure in the human brain that is responsible for the secretion of cerebrospinal fluid (CSF) and forming the blood-CSF barrier (B-CSF-B). Human-induced pluripotent stem cells (hiPSCs) have shown promising results in the formation of brain organoids in vitro; however, very few studies to date have generated ChP organoids. In particular, no study has assessed the inflammatory response and the extracellular vesicle (EV) biogenesis of hiPSC-derived ChP organoids. In this study, the impacts of Wnt signaling on the inflammatory response and EV biogenesis of ChP organoids derived from hiPSCs was investigated. During days 10-15, bone morphogenetic protein 4 was added along with (+/-) CHIR99021 (CHIR, a small molecule GSK-3β inhibitor that acts as a Wnt agonist). At day 30, the ChP organoids were characterized by immunocytochemistry and flow cytometry for TTR (~72%) and CLIC6 (~20%) expression. Compared to the -CHIR group, the +CHIR group showed an upregulation of 6 out of 10 tested ChP genes, including CLIC6 (2-fold), PLEC (4-fold), PLTP (2-4-fold), DCN (~7-fold), DLK1 (2-4-fold), and AQP1 (1.4-fold), and a downregulation of TTR (0.1-fold), IGFBP7 (0.8-fold), MSX1 (0.4-fold), and LUM (0.2-0.4-fold). When exposed to amyloid beta 42 oligomers, the +CHIR group had a more sensitive response as evidenced by the upregulation of inflammation-related genes such as TNFα, IL-6, and MMP2/9 when compared to the -CHIR group. Developmentally, the EV biogenesis markers of ChP organoids showed an increase over time from day 19 to day 38. This study is significant in that it provides a model of the human B-CSF-B and ChP tissue for the purpose of drug screening and designing drug delivery systems to treat neurological disorders such as Alzheimer's disease and ischemic stroke.


miR-218 Involvement in Cardiomyocyte Hypertrophy Is Likely through Targeting REST.

  • Jing-Jing Liu‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

MicroRNAs (miRNAs) have been identified as key players in cardiomyocyte hypertrophy, which is associated with significant risks of heart failure. However, many microRNAs are still not recognized for their functions in pathophysiological processes. In this study, we evaluated effects of miR-218 in cardiomyocyte hypertrophy using both in vitro and in vivo models. We found that miR-218 was evidently downregulated in a transverse aortic constriction (TAC) mouse model. Overexpression of miR-218 is sufficient to reduce hypertrophy, whereas the suppression of miR-218 aggravates hypertrophy in primary cardiomyocytes induced by isoprenaline (ISO). In addition, we identified RE1-silencing transcription factor (REST) as a novel target of miR-218; it negatively regulated the expression of REST in hypertrophic cardiomyocytes and the TAC model. These results showed that miR-218 plays a crucial role in cardiomyocyte hypertrophy, likely via targeting REST, suggesting a potential candidate target for interfering hypertrophy.


β-Catenin-Specific Inhibitor, iCRT14, Promotes BoHV-1 Infection-Induced DNA Damage in Human A549 Lung Adenocarcinoma Cells by Enhancing Viral Protein Expression.

  • Xiuyan Ding‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Oncolytic bovine herpesvirus type 1 (BoHV-1) infection induces DNA damage in human lung adenocarcinoma cell line A549. However, the underlying mechanisms are not fully understood. We found that BoHV-1 infection decreased the steady-state protein levels of p53-binding protein 1 (53BP1), which plays a central role in dictating DNA damage repair and maintaining genomic stability. Furthermore, BoHV-1 impaired the formation of 53BP1 foci, suggesting that BoHV-1 inhibits 53BP1-mediated DNA damage repair. Interestingly, BoHV-1 infection redistributed intracellular β-catenin, and iCRT14 (5-[[2,5-Dimethyl-1-(3-pyridinyl)-1H-pyrrol-3-yl]methylene]-3-phenyl-2,4-thiazolidinedione), a β-catenin-specific inhibitor, enhanced certain viral protein expression, such as the envelope glycoproteins gC and gD, and enhanced virus infection-induced DNA damage. Therefore, for the first time, we provide evidence showing that BoHV-1 infection disrupts 53BP1-mediated DNA damage repair and suggest β-catenin as a potential host factor restricting both virus replication and DNA damage in A549 cells.


Treatment of Periodontal Inflammation in Diabetic Rats with IL-1ra Thermosensitive Hydrogel.

  • Yue Liu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Periodontitis is a chronic inflammatory disease that is considered to be the main cause of adult tooth loss. Diabetes mellitus (DM) has a bidirectional relationship with periodontitis. Interleukin-1β (IL-1β) is an important pre-inflammatory factor, which participates in the pathophysiological process of periodontitis and diabetes. The interleukin-1 receptor antagonist (IL-1ra) is a natural inhibitor of IL-1, and the balance between IL-1ra and IL-1β is one of the main factors affecting chronic periodontitis (CP) and diabetes. The purpose of this study is to develop a drug carrier that is safe and nontoxic and can effectively release IL-1ra, which can effectively slow down the inflammation of periodontal tissues with diabetes, and explore the possibility of lowering the blood sugar of this drug carrier. Therefore, in this experiment, a temperature-sensitive hydrogel loaded with IL-1ra was prepared and characterized, and its anti-inflammatory effect in high-sugar environments in vivo and in vitro was evaluated. The results showed that the hydrogel could gel after 5 min at 37 °C, the pore size was 5-70 μm, and the cumulative release of IL-1ra reached 83.23% on the 21st day. Real-time polymerase chain reaction (qRT-PCR) showed that the expression of IL-1β, Interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) inflammatory factors decreased after the treatment with IL-1ra-loaded thermosensitive hydrogel. Histological evaluation and micro-computed tomography (Micro-CT) showed that IL-1ra-loaded thermosensitive hydrogel could effectively inhibit periodontal inflammation and reduce alveolar bone absorption in rats with diabetic periodontitis. It is worth mentioning that this hydrogel also plays a role in relieving hyperglycemia. Therefore, the temperature-sensitive hydrogel loaded with IL-1ra may be an effective method to treat periodontitis with diabetes.


Mechanisms of Stress-Induced Spermatogenesis Impairment in Male Rats Following Unpredictable Chronic Mild Stress (uCMS).

  • Peng Zou‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

The negative association between psychological stress and male fertility has been known for many years. This study was aimed at (i) identifying spermatogenesis impairment induced by psychological stress in rats and (ii) exploring the role of glucocorticoid receptor (GR) signaling in these adverse effects (if they exist). Male Sprague Dawley rats were exposed to a six-week period of unpredictable chronic mild stress (uCMS) along with cotreatment of GR antagonist RU486 (1 mg/kg/day). Testicular damage was assessed by testicular pathological evaluation, epididymal sperm concentration, serum testosterone levels, testicular apoptotic cell measurements, and cell cycle progression analyses. Rats in the uCMS group had decreased levels of serum testosterone and decreased epididymal sperm concentration. The uCMS-treated rats also had decreased numbers of spermatids and increased levels of apoptotic seminiferous tubules; additionally, cell cycle progression of spermatogonia was arrested at the G0/G1 phase. Furthermore, uCMS exposure caused an increase in serum corticosterone level and activated GR signaling in the testes including upregulated GR expression. RU486 treatment suppressed GR signaling and alleviated the damaging effects of stress, resulting in an increased epididymal sperm concentration. Overall, this work demonstrated for the first time that the activation of GR signaling mediates stress-induced spermatogenesis impairment and that this outcome is related to cell apoptosis and cell cycle arrest in germ cells.


Global Transcriptome and Co-Expression Network Analysis Reveal Contrasting Response of Japonica and Indica Rice Cultivar to γ Radiation.

  • Xiaoxiang Zhang‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Japonica and indica are two important subspecies in cultivated Asian rice. Irradiation is a classical approach to induce mutations and create novel germplasm. However, little is known about the differential response between japonica and indica rice after γ radiation. Here, we utilized the RNA sequencing and Weighted Gene Co-expression Network Analysis (WGCNA) to compare the transcriptome differences between japonica Nipponbare (NPB) and indica Yangdao6 (YD6) in response to irradiation. Japonica subspecies are more sensitive to irradiation than the indica subspecies. Indica showed a higher seedling survival rate than japonica. Irradiation caused more extensive DNA damage in shoots than in roots, and the severity was higher in NPB than in YD6. GO and KEGG pathway analyses indicate that the core genes related to DNA repair and replication and cell proliferation are similarly regulated between the varieties, however the universal stress responsive genes show contrasting differential response patterns in japonica and indica. WGCNA identifies 37 co-expressing gene modules and ten candidate hub genes for each module. This provides novel evidence indicating that certain peripheral pathways may dominate the molecular networks in irradiation survival and suggests more potential target genes in breeding for universal stress tolerance in rice.


De Novo Transcriptome Sequencing Analysis of Goose (Anser anser) Embryonic Skin and the Identification of Genes Related to Feather Follicle Morphogenesis at Three Stages of Development.

  • Chang Liu‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

The objective of this study was to evaluate the changes in the goose embryo transcriptome during feather development. RNA-Sequencing (RNA-Seq) was used to find the transcriptome profiles of feather follicles from three stages of embryonic dorsal skin at embryonic day 13, 18, and 28 (E13, E18, E28). The results showed that 3001, 6634, and 13,780 genes were differently expressed in three stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that differentially expressed genes (DEGs) in E13 vs. E18 were significantly mapped into the GO term of extracellular structure organization and the pathway of extracellular matrix (ECM)-receptor interaction. In E18 vs. E28, the top significantly mapped into GO term was the single-organism developmental process; the pathway was also the ECM-receptor interaction. DEGs in E13 vs. E28 were significantly mapped into the GO term of the multicellular organismal process and the pathway of cell adhesion molecules. Subsequently, the union of DEGs was categorized by succession cluster into eight profiles, which were then grouped into four ideal profiles. Lastly, the seven genes spatio-temporal expression pattern was confirmed by real-time PCR. Our findings advocate that interleukin 20 receptor subunit alpha (IL20RA), interleukin 6 receptor (IL6R), interleukin 1 receptor type 1 (IL-1R1), Wnt family member 3A (WNT3A), insulin-like growth factor binding protein 3 (IGFBP3), bone morphogenetic protein 7 (BMP7), and secreted-frizzled related protein 2 (SFRP2) might possibly play vital roles in skin and feather follicle development and growth processes.


Sequencing, Characterization, and Comparative Analyses of the Plastome of Caragana rosea var. rosea.

  • Mei Jiang‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

To exploit the drought-resistant Caragana species, we performed a comparative study of the plastomes from four species: Caragana rosea, C. microphylla, C. kozlowii, and C. Korshinskii. The complete plastome sequence of the C. rosea was obtained using the next generation DNA sequencing technology. The genome is a circular structure of 133,122 bases and it lacks inverted repeat. It contains 111 unique genes, including 76 protein-coding, 30 tRNA, and four rRNA genes. Repeat analyses obtained 239, 244, 258, and 246 simple sequence repeats in C. rosea, C. microphylla, C. kozlowii, and C. korshinskii, respectively. Analyses of sequence divergence found two intergenic regions: trnI-CAU-ycf2 and trnN-GUU-ycf1, exhibiting a high degree of variations. Phylogenetic analyses showed that the four Caragana species belong to a monophyletic clade. Analyses of Ka/Ks ratios revealed that five genes: rpl16, rpl20, rps11, rps7, and ycf1 and several sites having undergone strong positive selection in the Caragana branch. The results lay the foundation for the development of molecular markers and the understanding of the evolutionary process for drought-resistant characteristics.


Improvement of morphine-mediated analgesia by inhibition of β-arrestin2 expression in mice periaqueductal gray matter.

  • Yuting Li‎ et al.
  • International journal of molecular sciences‎
  • 2009‎

Morphine is a well-known mu-opioid receptor (MOR) agonist and an efficient analgesic, but its long-term use inevitably leads to drug addiction and tolerance. Here, we show that specific inhibition of beta-arrestin2 with its siRNA lentivirus microinjected in mice periaqueductal gray matter (PAG) significantly improved both acute and chronic morphine analgesia and delayed the tolerance in the hotplate test. The specific effect of beta-arrestin2 was proven by overexpression or knockdown of its homology beta-arrestin1 in PAG, which showed no significant effects on morphine analgesia. These findings suggest that specific siRNA targeting beta-arrestin2 may constitute a new approach to morphine therapy and other MOR agonist-mediated analgesia and tolerance.


The Importance of Conserved Serine for C-Terminally Encoded Peptides Function Exertion in Apple.

  • Zipeng Yu‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

The C-terminally encoded peptide (CEP) family has been shown to play vital roles in plant growth. Although a genome-wide analysis of this family has been performed in Arabidopsis, little is known regarding CEPs in apple (Malus domestica).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: