Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

Vibration Training Triggers Brown Adipocyte Relative Protein Expression in Rat White Adipose Tissue.

  • Chao Sun‎ et al.
  • BioMed research international‎
  • 2015‎

Recently, vibration training is considered as a novel strategy of weight loss; however, its mechanisms are still unclear. In this study, normal or high-fat diet-induced rats were trained by whole body vibration for 8 weeks. We observed that the body weight and fat metabolism index, blood glucose, triglyceride, cholesterol, and free fatty acid in obesity rats decreased significantly compared with nonvibration group (n = 6). Although intrascapular BAT weight did not change significantly, vibration enhanced ATP reduction and increased protein level of the key molecule of brown adipose tissue (BAT), PGC-1α, and UCP1 in BAT. Interestingly, the adipocytes in retroperitoneal white adipose tissue (WAT) became smaller due to vibration exercise and had higher protein level of the key molecule of brown adipose tissue (BAT), PGC-1α, and UCP1 and inflammatory relative proteins, IL-6 and TNFα. Simultaneously, ATP content and PPARγ protein level in WAT became less in rats compared with nonvibration group. The results indicated that vibration training changed lipid metabolism in rats and promoted brown fat-like change in white adipose tissues through triggering BAT associated gene expression, inflammatory reflect, and reducing energy reserve.


Epithelial-mesenchymal transition regulated by EphA2 contributes to vasculogenic mimicry formation of head and neck squamous cell carcinoma.

  • Wei Wang‎ et al.
  • BioMed research international‎
  • 2014‎

Vasculogenic mimicry (VM) was related to invasion and metastasis of head and neck squamous cell carcinoma (HNSCC) patients. This study was designed to investigate the role of EphA2 in VM formation of HNSCC.


Pulmonary Function and Arterial Stiffness in Chronic Heart Failure.

  • Li Li‎ et al.
  • BioMed research international‎
  • 2016‎

Arterial stiffness contributes to heart failure and is decreased by angiotensin receptor blockers (ARBs). This cross-sectional study aimed to assess associations of lung function and ARB with arterial stiffness in patients with chronic heart failure. 354 outpatients (168 males; 186 females; 68.2 ± 7.2 years old) with chronic heart failure were evaluated. Lung function parameters, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and FEV1 to FVC ratio (FEV1/FVC), were assessed. The cardio-ankle vascular index (CAVI) was used to estimate arterial stiffness. Unadjusted correlation analyses revealed a positive association of CAVI with ARB but not ACEI, and a negative correlation with FEV1 (r = -0.2987, p < 0.0001). Multiple stepwise regression analyses showed that ARB and FEV1 (p < 0.0001) were independent predicting factors for CAVI. These findings suggest that reduced pulmonary function is associated with increased CAVI. Pulmonary function protection could be used to improve the prognosis in heart failure, but additional studies are necessary.


Age-Specific Gene Expression Profiles of Rhesus Monkey Ovaries Detected by Microarray Analysis.

  • Hengxi Wei‎ et al.
  • BioMed research international‎
  • 2015‎

The biological function of human ovaries declines with age. To identify the potential molecular changes in ovarian aging, we performed genome-wide gene expression analysis by microarray of ovaries from young, middle-aged, and old rhesus monkeys. Microarray data was validated by quantitative real-time PCR. Results showed that a total of 503 (60 upregulated, 443 downregulated) and 84 (downregulated) genes were differentially expressed in old ovaries compared to young and middle-aged groups, respectively. No difference in gene expression was found between middle-aged and young groups. Differentially expressed genes were mainly enriched in cell and organelle, cellular and physiological process, binding, and catalytic activity. These genes were primarily associated with KEGG pathways of cell cycle, DNA replication and repair, oocyte meiosis and maturation, MAPK, TGF-beta, and p53 signaling pathway. Genes upregulated were involved in aging, defense response, oxidation reduction, and negative regulation of cellular process; genes downregulated have functions in reproduction, cell cycle, DNA and RNA process, macromolecular complex assembly, and positive regulation of macromolecule metabolic process. These findings show that monkey ovary undergoes substantial change in global transcription with age. Gene expression profiles are useful in understanding the mechanisms underlying ovarian aging and age-associated infertility in primates.


The Antitumor Effect of Gekko Sulfated Glycopeptide by Inhibiting bFGF-Induced Lymphangiogenesis.

  • Xiu-Li Ding‎ et al.
  • BioMed research international‎
  • 2016‎

Objective. To study the antilymphangiogenesis effect of Gekko Sulfated Glycopeptide (GSPP) on human lymphatic endothelial cells (hLECs). Methods. MTS was conducted to confirm the antiproliferation effect of GSPP on hLECs; flow cytometry was employed to detect hLECs cycle distribution; the antimigration effect of GSPP on hLECs was investigated by wound healing experiment and transwell experiment; tube formation assay was used to examine its inhibitory effect on the lymphangiogenesis; western blotting was conducted to detect the expression of extracellular signal-regulated kinase1/2 (Erk1/2) and p-Erk1/2 after GSPP and basic fibroblast growth factor (bFGF) treatment. Nude mice models were established to investigate the antitumor effect of GSPP in vivo. Decreased lymphangiogenesis caused by GSPP in vivo was verified by immunohistochemical staining. Results. In vitro, GSPP (10 μg/mL, 100 μg/mL) significantly inhibited bFGF-induced hLECs proliferation, migration, and tube-like structure formation (P < 0.05) and antagonized the phosphorylation activation of Erk1/2 induced by bFGF. In vivo, GSPP treatment (200 mg/kg/d) not only inhibited the growth of colon carcinoma, but also inhibited the tumor lymphangiogenesis. Conclusion. GSPP possesses the antitumor ability by inhibiting bFGF-inducing lymphangiogenesis in vitro and in vivo, which may further inhibit tumor lymphatic metastasis.


Proteomic Profile of Carbonylated Proteins Screen Regulation of Apoptosis via CaMK Signaling in Response to Regular Aerobic Exercise.

  • Wenfeng Liu‎ et al.
  • BioMed research international‎
  • 2018‎

To research carbonylated proteins and screen molecular targets in the rat striatum on regular aerobic exercise, male Sprague-Dawley rats (13 months old, n = 24) were randomly divided into middle-aged sedentary control (M-SED) and aerobic exercise (M-EX) groups (n = 12 each). Maximum oxygen consumption (VO2max) gradually increased from 50%-55% to 65%-70% for a total of 10 weeks. A total of 36 carbonylated proteins with modified oxidative sites were identified by Electrospray Ionization-Quadrupole-Time of Flight-Mass Spectrometer (ESI-Q-TOF-MS), including 17 carbonylated proteins unique to the M-SED group, calcium/calmodulin-dependent protein kinase type II subunit beta (CaMKIIβ), and heterogeneous nuclear ribonucleoprotein A2/B1 (Hnrnpa2b1), among others, and 19 specific to the M-EX group, ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1), and malic enzyme, among others. Regular aerobic exercise improved behavioral and stereological indicators, promoted normal apoptosis (P < 0.01), alleviated carbonylation of the CaMKIIβ and Hnrnpa2b1, but induced carbonylation of the UCH-L1, and significantly upregulated the expression levels of CaMKIIβ, CaMKIIα, and Vdac1 (p < 0.01) and Hnrnpa2b1 and UCH-L1 (p < 0.01), as well as the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways (PI3K/Akt/mTOR) pathway-related genes Akt and mTOR. Regular aerobic exercise for 10 weeks (incremental for the first 6 weeks followed by constant loading for 4 weeks) enhanced carbonylation of CaMKIIβ, Hnrnpa2b1, and modulated apoptosis via activation of CaMK and phosphoinositide 3-kinase/protein kinase B/mTOR signaling. It also promoted normal apoptosis in the rat striatum, which may have protective effects in neurons.


MicroRNA Expression Profiling Screen miR-3557/324-Targeted CaMK/mTOR in the Rat Striatum of Parkinson's Disease in Regular Aerobic Exercise.

  • Wenfeng Liu‎ et al.
  • BioMed research international‎
  • 2019‎

This study aimed to screen the target miRNAs and to investigate the differential miR-3557/324-targeted signal mechanisms in the rats' model of Parkinson's disease (PD) with regular aerobic exercise. Rats were divided into sedentary control PD group (SED-PD, n = 18) and aerobic exercise PD group (EX-PD, n = 22). After 8 weeks of regular aerobic exercise, a 6-hydroxydopamine- (6-OHDA-) induced PD lesion model was constructed. Preregular aerobic exercises enhanced the injury resistance of rats with 6-OHDA-induced PD. The rotational behavior after injection of apomorphine hydrochloride was alleviated. Under the scanning electron microscopy, we found the neurons, axons, and villi of the striatum were clearly and tightly arranged, and neurons and axons significantly becoming larger. Tyrosine hydroxylase (TH) was increased significantly and α-synuclein protein expression was reduced in the EX-PD group compared to the SED-PD group. Screening from miRNA microarray chip, we further found upregulation of miR-3557 and downregulation of miR-324 were closely related to the calcium-modulating signaling pathway, remitting the progress of Parkinson's disease on aerobic exercise. Compared to the SED-PD group, Ca2+/calmodulin dependent protein kinase II (CaMK2α) was upregulated, but CaMKV and voltage-dependent anion-selective channel protein 1 (Vdac1) were significantly downregulated in the EX-PD group. Additionally, phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) expression were activated, and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) expression was upregulated in the EX-PD group. Conclusions: the adaptive mechanism of regular aerobic exercise delaying neurodegenerative diseases and lesions was that miR-3557/324 was activated to regulate one of its targets CaMKs signaling pathways. CaMKs, coordinated with mTOR pathway-related gene expression, improved UCH-L1 level to favor for delaying neurodegeneration or improving the pathogenesis of PD lesions.


Whole Body Vibration Retards Progression of Atherosclerosis via Insulin-Like Growth Factor 1 in Apolipoprotein E-Deficient Mice.

  • He Wu‎ et al.
  • BioMed research international‎
  • 2018‎

Whole body vibration (WBV) has a marked impact on lipid metabolism and the endocrine system, which is related to the progression of atherosclerosis (AS). To investigate the effects of WBV, we measured the atherosclerotic plaque area of apolipoprotein E-knockout (ApoE-/-) AS mice, which were trained by WBV (15 Hz, 30 min) for 12 weeks. Simultaneously, serum levels of lipids, insulin-like growth factor 1 (IGF-1), insulin-like growth factor 1 receptor (IGF-1R), interleukin 6 (IL-6), and the mRNA and protein levels of the same in the aorta were compared between the control and WBV groups. The results indicated that WBV significantly reduced the atherosclerotic plaque area with lower very low-density lipoprotein (VLDL) and oxidized low-density lipoprotein (ox-LDL) in the blood. Moreover, the levels of IGF-1 in serum and expression of IL-6, IGF-1R, and p-IGF-1R protein in the mice aorta decreased significantly in the WBV group. In addition, we found that serum IGF-1 in mice increased to the highest concentration in 30 min after WBV for 10, 30, 60, and 120 minutes. These results suggested that appropriate WBV may delay the progression of AS, which was associated with acutely elevated serum IGF-1 and lower levels of IGF-1 and IL-6 in the aorta for long-term treatment.


Protective Effects of Adiponectin against Cobalt Chloride-Induced Apoptosis of Smooth Muscle Cells via cAMP/PKA Pathway.

  • Jingjie Xiao‎ et al.
  • BioMed research international‎
  • 2020‎

Adiponectin (APN) is an adipokine secreted from adipose tissue and exhibits biological functions such as microcirculation-regulating, hearing-protective, and antiapoptotic. However, the effect of APN on the apoptosis of spiral arterial smooth muscle cells (SMCs) under hypoxic conditions in vitro is not clear. We used cobalt chloride (CoCl2) to simulate chemical hypoxia in vitro, and the SMCs were pretreated with APN and then stimulated with CoCl2. The viability of cells and apoptosis were assessed by CCK-8 and flow cytometry, respectively. Superoxide dismutase (SOD) activity, malondialdehyde (MDA) levels, cAMP level, and the activity of PKA were detected by ELISA. Protein expression and localization were studied by Western blot and immunofluorescence analysis. In the present study, we found that APN exhibits antiapoptosis effects. CoCl2 exhibited decreased cell viability, increased apoptosis and MDA levels, and decreased SOD activity in a concentration-dependent manner, compared with the control group. Moreover, CoCl2 upregulated the expression levels of Bax and cleaved caspase-3 and then downregulated Bcl-2 levels in a time-dependent manner. Compared with the CoCl2 group, the group pretreated with APN had increased cell viability, SOD activity, PKA activity, cAMP level, and PKA expression, but decreased MDA levels and apoptosis. Lastly, the protective effect of APN was blocked by cAMP inhibitor SQ22536 and PKA inhibitor H 89. These results showed that APN protected SMCs against CoCl2-induced hypoxic injury via the cAMP/PKA signaling pathway.


Effect of Metformin on a Preeclampsia-Like Mouse Model Induced by High-Fat Diet.

  • Fuchuan Wang‎ et al.
  • BioMed research international‎
  • 2019‎

Metformin has been reported to decrease insulin resistance and is associated with a lower risk of pregnancy-induced hypertension and preeclampsia. It is widely accepted that the placenta plays a crucial role in the development of preeclampsia. Our aim is to explore the effect of metformin on preeclampsia.


MicroRNA-27a Promotes Oxidative-Induced RPE Cell Death through Targeting FOXO1.

  • Chengda Ren‎ et al.
  • BioMed research international‎
  • 2021‎

Age-related macular degeneration (AMD) is a multifactor disease, which is primarily characterized by retinal pigment epithelium (RPE) cell loss. Since the retina is the most metabolically active tissue, RPE cells are exposed to consistent oxidative environment. So, oxidation-induced RPE cell death has long been considered a contributor to the onset of AMD. Here, we applied a retinal degeneration (RD) rat model induced by blue light-emitting diode (LED) and a cell model constructed by H2O2 stimulus to mimic the prooxidant environment of the retina. We detected that the expression of miR-27a was upregulated and the expression of FOXO1 was downregulated in both models. So, we furtherly investigated the role of miR-27a-FOXO1 axis in RPE in protesting against oxidants. Lentivirus-mediated RNA was injected intravitreally into rats to modulate the miR-27a-FOXO1 axis. Retinal function and histopathological changes were evaluated by electroretinography (ERG) analysis and hematoxylin and eosin (H&E) staining, respectively. Massive photoreceptor and RPE cell death were examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). The damage to the retina was aggravated in the FOXO1 gene-knockdown and miR-27a-overexpression groups after exposure to LED but was alleviated in the FOXO1 gene-overexpression or miR-27a-knockdown groups. Dual luciferase assay was used to detect the binding site of miR-27a and FOXO1. Upregulated miR-27a inhibited the expression of FOXO1 by directly binding to the FOXO1 mRNA 3'UTR and decreased the autophagy activity of ARPE-19 cells, resulting in the accumulation of reactive oxygen species (ROS) and decrease of cell viability. The results suggest that miR-27a is a negative regulator of FOXO1. Also, our data emphasize the prominent role of miR-27a/FOXO1 axis in modulating ROS accumulation and cell death in RPE cell model under oxidative stress and influencing the retinal function in the LED-induced RD rat model.


The inhibitory effect of somatostatin receptor activation on bee venom-evoked nociceptive behavior and pCREB expression in rats.

  • Li Li‎ et al.
  • BioMed research international‎
  • 2014‎

The present study examined nociceptive behaviors and the expression of phosphorylated cAMP response element-binding protein (pCREB) in the dorsal horn of the lumbar spinal cord and the dorsal root ganglion (DRG) evoked by bee venom (BV). The effect of intraplantar preapplication of the somatostatin analog octreotide on nociceptive behaviors and pCREB expression was also examined. Subcutaneous injection of BV into the rat unilateral hindpaw pad induced significant spontaneous nociceptive behaviors, primary mechanical allodynia, primary thermal hyperalgesia, and mirror-thermal hyperalgesia, as well as an increase in pCREB expression in the lumbar spinal dorsal horn and DRG. Octreotide pretreatment significantly attenuated the BV-induced lifting/licking response and mechanical allodynia. Local injection of octreotide also significantly reduced pCREB expression in the lumbar spinal dorsal horn and DRG. Furthermore, pretreatment with cyclosomatostatin, a somatostatin receptor antagonist, reversed the octreotide-induced inhibition of the lifting/licking response, mechanical allodynia, and the expression of pCREB. These results suggest that BV can induce nociceptive responses and somatostatin receptors are involved in mediating the antinociception, which provides new evidence for peripheral analgesic action of somatostatin in an inflammatory pain state.


Comparative Genomic Analysis of Trichinella spiralis Reveals Potential Mechanisms of Adaptive Evolution.

  • Zigang Qu‎ et al.
  • BioMed research international‎
  • 2019‎

Trichinellosis caused by parasitic nematodes of the genus Trichinella may result in human morbidity and mortality worldwide. Deciphering processes that drive species diversity and adaptation are key to understanding parasitism and developing effective control strategies. Our goal was to identify genes that are under positive selection and possible mechanisms of adaptive evolution of Trichinella spiralis genes using a comparative genomic analysis with the genomes of Brugia malayi, Trichuris suis, Ancylostoma ceylanicum, and Caenorhabditis elegans. The CODEML program derived from the PAML package was used to deduce the most probable dN/dS ratio, a measurement to detect genes/proteins undergoing adaptation. For each pair of sequences, those with a dN/dS ratio > 1 were considered positively selected genes (PSGs). Altogether, 986 genes were positively selected (p-value < 0.01). Genes involved in metabolic pathways, signaling pathways, and cytosolic DNA-sensing pathways were significantly enriched among the PSGs. Several PSGs are associated with exploitation of the host: modification of the host's metabolism, creation of new parasite-specific morphological structures between T. spiralis and the host interface, xenobiotic metabolism to combat low oxygen concentrations and host toxicity, muscle cell transformation, cell cycle arrest, DNA repair processes during nurse cell formation, antiapoptotic factors, immunomodulation, and regulation of epigenetic processes. Some of the T. spiralis PSGs have C. elegans orthologs that confer severe or lethal RNAi phenotypes. Fifty-seven PSGs in T. spiralis were analyzed to encode differentially expressed proteins. The present study utilized an overall comparative genomic analysis to discover PSGs within T. spiralis and their relationships with biological function and organism fitness. This analysis adds to our understanding of the possible mechanism that contributes to T. spiralis parasitism and biological adaptation within the host, and thus these identified genes may be potential targets for drug and vaccine development.


Bone Morphogenetic Proteins 2/4 Are Upregulated during the Early Development of Vascular Calcification in Chronic Kidney Disease.

  • Xiao Wei‎ et al.
  • BioMed research international‎
  • 2018‎

Vascular calcification is a main cause of increased cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients. This study aimed to investigate the role of the bone morphogenetic protein (BMP) signaling pathway in the early development of vascular calcification in CKD. A CKD vascular calcification rat model was established by providing rats with a 1.8% high-phosphorus diet and an intragastric administration of 2.5% adenine suspension. The kidney and aortic pathologies were analyzed. Blood biochemical indicators, serum BMP-2 and BMP-4 levels, and aortic calcium content were determined. The expression levels of BMP-2, BMP-4, bone morphogenetic protein receptor-IA (BMPR-IA), and matrix Gla protein (MGP) in aorta were examined by quantitative real-time polymerase chain reaction and immunohistochemistry. Compared with the normal control (Nor) rats, the CKD rats exhibited a significantly decreased body weight and an increased kidney weight as well as abnormal renal function and calcium-phosphorus metabolism. Aortic von Kossa and Alizarin red staining showed massive granular deposition and formation of calcified nodules in aorta at 8 weeks. The aortic calcium content was significantly increased, which was positively correlated with the serum BMP-2 (r = 0.929; P < 0.01) and serum BMP-4 (r = 0.702; P < 0.01) levels in CKD rats. The rat aortic BMP-2 mRNA level in the CKD rats was persistently increased, and the BMP-4 mRNA level was prominently increased at the 4th week, declining thereafter. Strong staining of BMP-2, BMP-4, BMPR-IA, and MGP proteins was observed in the tunica media of the aorta from the 4th week after model induction. In conclusion, activation of the BMP signaling pathway is involved in the early development of vascular calcification in CKD. Therefore, elevated serum BMP-2 and BMP-4 levels may serve as serum markers for CKD vascular calcification.


Elevated hsa_circRNA_101015, hsa_circRNA_101211, and hsa_circRNA_103470 in the Human Blood: Novel Biomarkers to Early Diagnose Acute Pancreatitis.

  • Chang Liu‎ et al.
  • BioMed research international‎
  • 2020‎

To explore potential biomarkers to accurately diagnose patients with acute pancreatitis (AP) at early stage and to auxiliary clinicians implement the best treatment options.


Strontium/Chitosan/Hydroxyapatite/Norcantharidin Composite That Inhibits Osteosarcoma and Promotes Osteogenesis In Vitro.

  • Zhipeng Huang‎ et al.
  • BioMed research international‎
  • 2020‎

Hydroxyapatite can deliver drugs, and its composite material is capable of repairing bone defects in tumors. This study was conducted to evaluate the effect of composite materials on tumor growth inhibition and bone growth induction. Composites containing drug delivery compounds were synthesized by coprecipitation and freeze-drying and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). In addition, the effect of hydroxyapatite nanoparticles (nano-SHAP) on proliferation of an osteosarcoma cell line (MG-63) and an osteoblast cell line (MC3T3-E1) was evaluated, and its mechanism was studied. The use of nano-SHAP alone did not affect the proliferation of normal cell lines. However, nanoparticles containing different amounts of norcantharidin in the composite materials and had different inhibitory effects on osteosarcoma and different effects on osteoblasts. And, with the increase of the content of norcantharidin, the antitumor performance of the composite has been enhanced. In summary, the nano-SHAP system developed in this study is a drug delivery material that can inhibit the growth of tumors and induce the proliferation of osteoblasts.


BASP1 Suppresses Cell Growth and Metastasis through Inhibiting Wnt/β-Catenin Pathway in Gastric Cancer.

  • Li Li‎ et al.
  • BioMed research international‎
  • 2020‎

Our research is designed to explore the function of brain acid soluble protein 1 (BASP1) in the progression of gastric cancer (GC) and its underlying molecular mechanisms.


Xiaoxuming Decoction Regulates Vascular Function by Modulating G Protein-Coupled Receptors: A Molecular Docking Study.

  • Yanjia Shen‎ et al.
  • BioMed research international‎
  • 2021‎

Xiaoxuming decoction (XXMD) is a traditional Chinese herbal medicine (CHM) that is used for the treatment of stroke in China. Stroke injury damages the cerebral vasculature and disrupts the autoregulation of vasoconstriction and vasodilatation, which is crucial for maintaining constant cerebral blood flow (CBF). It has been reported that XXMD exerts a positive effect on cerebral circulation in animal models of stroke. However, the mechanisms underlying the regulatory effect of XXMD on vascular tone, and the interactions among the multiple components of XXMD, remain unclear. In this study, XXMD was found to induce relaxation of the basilar artery rings of rats precontracted by 5-hydroxytryptamine (5-HT) in vitro, in a dose-dependent manner. The modulation of vascular tone and the process of cerebral ischemia are mediated via the interactions between G protein-coupled receptors (GPCRs) and their ligands, including 5-HT, angiotensin II (Ang II), and urotensin II (UII). Thus, the potential synergistic effects of the different components of XXMD on the regulation of vasoconstriction and vasodilation were further investigated by molecular docking based on network pharmacology. We constructed and analyzed a database comprising 963 compounds of XXMD and studied the interactions between five vascular GPCRs (5-HT1A receptor (5-HT1AR), 5-HT1B receptor (5-HT1BR), Ang II type 1 receptor (AT1R), beta 2-adrenergic receptor (β2-AR), and UII receptor (UTR)) and the various herbal constituents of XXMD using molecular docking. By constructing and analyzing the compound-target networks of XXMD, we found that Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, and Paeoniae Radix Alba were the three major herbs that contained a large number of compounds with high docking scores. We additionally observed that several constituents of XXMD, including gallotannin, liquiritin apioside, nariutin, 1,2,3,4,6-pentagalloylglucose, folic acid, and ginsenoside Rb1, targeted multiple vascular GPCRs. Moreover, the interactions between the components of XXMD and the targets related to vascular tone constituted the comprehensive cerebrovascular regulatory function of XXMD and provided a material basis of the vasoregulatory function of XXMD. The study reports the contributions of various components of XXMD to the regulatory effects on vascular tone and provides scientific evidence for the multicomponent and multitargeting characteristics of XXMD.


A Meta-Analysis of Therapeutic Efficacy and Safety of Gabapentin in the Treatment of Postherpetic Neuralgia from Randomized Controlled Trials.

  • Meng Zhang‎ et al.
  • BioMed research international‎
  • 2018‎

The study aims to systematically evaluate the clinical effect of gabapentin in the treatment of postherpetic neuralgia (PHN).


Optimizing perfusion-decellularization methods of porcine livers for clinical-scale whole-organ bioengineering.

  • Qiong Wu‎ et al.
  • BioMed research international‎
  • 2015‎

Aim. To refine the decellularization protocol of whole porcine liver, which holds great promise for liver tissue engineering. Methods. Three decellularization methods for porcine livers (1% sodium dodecyl sulfate (SDS), 1% Triton X-100 + 1% sodium dodecyl sulfate, and 1% sodium deoxycholate + 1% sodium dodecyl sulfate) were studied. The obtained liver scaffolds were processed for histology, residual cellular content analysis, and extracellular matrix (ECM) components evaluation to investigate decellularization efficiency and ECM preservation. Rat primary hepatocytes were seeded into three kinds of scaffold to detect the biocompatibility. Results. The whole liver decellularization was successfully achieved following all three kinds of treatment. SDS combined with Triton had a high efficacy of cellular removal and caused minimal disruption of essential ECM components; it was also the most biocompatible procedure for primary hepatocytes. Conclusion. We have refined a novel, standardized, time-efficient, and reproducible protocol for the decellularization of whole liver which can be further adapted to liver tissue engineering.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: