Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Measurement of the Nucleus Area and Nucleus/Cytoplasm and Mitochondria/Nucleus Ratios in Human Colon Tissues by Dual-Colour Two-Photon Microscopy Imaging.

  • Chang Su Lim‎ et al.
  • Scientific reports‎
  • 2015‎

We developed two-photon (TP) probes for DNA (ABI-Nu), cytoplasm (Pyr-CT), and mitochondria (BF-MT). We found that ABI-Nu binds to AT in the minor groove, while ABI-Nu and BF-MT are effective for tracking in the cytoplasm and mitochondria, respectively. These probes showed very large effective two-photon action cross section values of 2230, 1555, and 790 Göppert-Mayer units (1 GM  =  10(-50) cm(4) s photon(-1) molecule(-1)) at 740 nm with emission maxima at 473, 561, and 560 nm, respectively, in each organelle. Using these probes, we quantitatively estimated the mean nuclear area and the ratios of nuclei to cytoplasm and mitochondria to nuclei in human colon tissues by dual-colour two-photon microscopy imaging within 2  h after biopsy. The mean nuclear area and the nuclei to cytoplasm and mitochondria to cytoplasm ratios increased in the following order: normal colon mucosa


Characterization of irreversible electroporation on the stomach: A feasibility study in rats.

  • Jae Min Lee‎ et al.
  • Scientific reports‎
  • 2019‎

Irreversible electroporation (IRE) is a newly developed non-thermal ablative therapy. During the IRE procedure, the permeability of the cell membrane is irreversibly changed by application of high-energy pulses across the tissue. This induces the breakdown of cell homeostasis, and thereby cell death. Here, we present an in vivo study to demonstrate IRE ablation of gastric tissue and characterize the changes that occur with time therein. No significant complications were observed in the test rats during the experiment. The electroporated tissues exhibited apoptosis at 10, 24 and 48 h after IRE ablation. The apoptosis peaked at 10 h after IRE and then declined, suggesting that the ablated tissue rapidly recovered owing to intense metabolic activity. In addition, the electroporated tissues exhibited morphological changes such as pyknosis and karyorrhexis, while histological analysis showed that the blood vessels were preserved. Interestingly, electroporation greatly affected the mucosa and muscularis propria, but not the submucosa and serosa. This study suggests that IRE could potentially be used as a minimally invasive treatment for early gastric cancer that does not exhibit lymph node metastasis or dysplasia.


Artificial intelligence-assisted analysis of endoscopic retrograde cholangiopancreatography image for identifying ampulla and difficulty of selective cannulation.

  • Taesung Kim‎ et al.
  • Scientific reports‎
  • 2021‎

The advancement of artificial intelligence (AI) has facilitated its application in medical fields. However, there has been little research for AI-assisted endoscopy, despite the clinical significance of the efficiency and safety of cannulation in the endoscopic retrograde cholangiopancreatography (ERCP). In this study, we aim to assist endoscopists performing ERCP through automatic detection of the ampulla and the identification of cannulation difficulty. We developed a novel AI-assisted system based on convolutional neural networks that predict the location of the ampulla and the difficulty of cannulation to the ampulla. ERCP data of 531 and 451 patients were utilized in the evaluation of our model for each task. Our model detected the ampulla with mean intersection-over-union 64.1%, precision 76.2%, recall 78.4%, and centroid distance 0.021. In classifying the cannulation difficulty, it achieved the recall of 71.9% for the class of easy cases and that of 61.1% for that of difficult cases. Remarkably, our model accurately detected AOV with varying morphological shape, size, and texture on par with the level of a human expert and showed promising results for recognizing cannulation difficulty. It demonstrated its potential to improve the quality of ERCP by assisting endoscopists.


Feasibility and effectiveness of endoscopic irreversible electroporation for the upper gastrointestinal tract: an experimental animal study.

  • Han Jo Jeon‎ et al.
  • Scientific reports‎
  • 2021‎

Irreversible electroporation (IRE) is a local non-thermal ablative technique currently used to treat solid tumors. Here, we investigated the clinical potency and safety of IRE with an endoscope in the upper gastrointestinal tract. Pigs were electroporated with recently designed endoscopic IRE catheters in the esophagus, stomach, and duodenum. Two successive strategies were introduced to optimize the electrical energy for the digestive tract. First, each organ was electroporated and the energy upscaled to confirm the upper limit energy inducing improper tissue results, including bleeding and perforation. Excluding the unacceptable energy from the first step, consecutive electroporations were performed with stepwise reductions in energy to identify the energy that damaged each layer. Inceptive research into inappropriate electrical intensity contributed to extensive hemorrhage and bowel perforation for each tissue above a certain energy threshold. However, experiments performed below the precluded energy accompanying hematoxylin and eosin staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays showed that damaged mucosal area and depth significantly decreased with decreased energy. Relevant histopathology showed infiltration of inflammatory cells with pyknotic nuclei at the electroporated lesion. This investigation demonstrated the possibility of endoscopic IRE in mucosal dysplasia or early malignant tumors of the hollow viscus.


Exosomes derived from palmitic acid-treated hepatocytes induce fibrotic activation of hepatic stellate cells.

  • Young-Sun Lee‎ et al.
  • Scientific reports‎
  • 2017‎

Non-alcoholic fatty liver disease (NAFLD) is a dominant cause of chronic liver disease, but the exact mechanism of progression from simple steatosis to nonalcoholic steatohepatitis (NASH) remains unknown. Here, we investigated the role of exosomes in NAFLD progression. Exosomes were isolated from a human hepatoma cell line treated with palmitic acid (PA) and their miRNA profiles examined by microarray. The human hepatic stellate cell (HSC) line (LX-2) was then treated with exosome isolated from hepatocytes. Compared with controls, PA-treated hepatocytes displayed significantly increased CD36 and exosome production. The microarray analysis showed there to be distinctive miRNA expression patterns between exosomes from vehicle- and PA-treated hepatocytes. When LX-2 cells were cultured with exosomes from PA-treated hepatocytes, the expression of genes related to the development of fibrosis were significantly amplified compared to those treated with exosomes from vehicle-treated hepatocytes. In conclusion, PA treatment enhanced the production of exosomes in these hepatocytes and changed their exosomal miRNA profile. Moreover, exosomes derived from PA-treated hepatocytes caused an increase in the expression levels of fibrotic genes in HSCs. Therefore, exosomes may have important roles in the crosstalk between hepatocytes and HSCs in the progression from simple steatosis to NASH.


Gene expression network analysis of lymph node involvement in colon cancer identifies AHSA2, CDK10, and CWC22 as possible prognostic markers.

  • Sung Won Han‎ et al.
  • Scientific reports‎
  • 2020‎

Colon cancer has been well studied using a variety of molecular techniques, including whole genome sequencing. However, genetic markers that could be used to predict lymph node (LN) involvement, which is the most important prognostic factor for colon cancer, have not been identified. In the present study, we compared LN(+) and LN(-) colon cancer patients using differential gene expression and network analysis. Colon cancer gene expression data were obtained from the Cancer Genome Atlas and divided into two groups, LN(+) and LN(-). Gene expression networks were constructed using LASSO (Least Absolute Shrinkage and Selection Operator) regression. We identified hub genes, such as APBB1, AHSA2, ZNF767, and JAK2, that were highly differentially expressed. Survival analysis using selected hub genes, such as AHSA2, CDK10, and CWC22, showed that their expression levels were significantly associated with the survival rate of colon cancer patients, which indicates their possible use as prognostic markers. In addition, protein-protein interaction network, GO enrichment, and KEGG pathway analysis were performed with selected hub genes from each group to investigate the regulatory relationships between hub genes and LN involvement in colon cancer; these analyses revealed differences between the LN(-) and LN(+) groups. Our network analysis may help narrow down the search for novel candidate genes for the treatment of colon cancer, in addition to improving our understanding of the biological processes underlying LN involvement. All R implementation codes are available at journal website as Supplementary Materials.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: