Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 55 papers

Genomic homogeneity between Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis belies their divergent growth rates.

  • John P Bannantine‎ et al.
  • BMC microbiology‎
  • 2003‎

Mycobacterium avium subspecies avium (M. avium) is frequently encountered in the environment, but also causes infections in animals and immunocompromised patients. In contrast, Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is a slow-growing organism that is the causative agent of Johne's disease in cattle and chronic granulomatous infections in a variety of other ruminant hosts. Yet we show that despite their divergent phenotypes and the diseases they present, the genomes of M. avium and M. paratuberculosis share greater than 97% nucleotide identity over large (25 kb) genomic regions analyzed in this study.


Comparative analysis of super-shedder strains of Escherichia coli O157:H7 reveals distinctive genomic features and a strongly aggregative adherent phenotype on bovine rectoanal junction squamous epithelial cells.

  • Rebecca Cote‎ et al.
  • PloS one‎
  • 2015‎

Shiga toxin-producing Escherichia coli O157:H7 (O157) are significant foodborne pathogens and pose a serious threat to public health worldwide. The major reservoirs of O157 are asymptomatic cattle which harbor the organism in the terminal recto-anal junction (RAJ). Some colonized animals, referred to as "super-shedders" (SS), are known to shed O157 in exceptionally large numbers (>104 CFU/g of feces). Recent studies suggest that SS cattle play a major role in the prevalence and transmission of O157, but little is known about the molecular mechanisms associated with super-shedding. Whole genome sequence analysis of an SS O157 strain (SS17) revealed a genome of 5,523,849 bp chromosome with 5,430 open reading frames and two plasmids, pO157 and pSS17, of 94,645 bp and 37,446 bp, respectively. Comparative analyses showed that SS17 is clustered with spinach-associated O157 outbreak strains, and belongs to the lineage I/II, clade 8, D group, and genotype 1, a subgroup of O157 with predicted hyper-virulence. A large number of non-synonymous SNPs and other polymorphisms were identified in SS17 as compared with other O157 strains (EC4115, EDL933, Sakai, TW14359), including in key adherence- and virulence-related loci. Phenotypic analyses revealed a distinctive and strongly adherent aggregative phenotype of SS17 on bovine RAJ stratified squamous epithelial (RSE) cells that was conserved amongst other SS isolates. Molecular genetic and functional analyses of defined mutants of SS17 suggested that the strongly adherent aggregative phenotype amongst SS isolates is LEE-independent, and likely results from a novel mechanism. Taken together, our study provides a rational framework for investigating the molecular mechanisms associated with SS, and strong evidence that SS O157 isolates have distinctive features and use a LEE-independent mechanism for hyper-adherence to bovine rectal epithelial cells.


Evaluation of eight live attenuated vaccine candidates for protection against challenge with virulent Mycobacterium avium subspecies paratuberculosis in mice.

  • John P Bannantine‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2014‎

Johne's disease is caused by Mycobacterium avium subsp. paratuberculosis (MAP), which results in serious economic losses worldwide in farmed livestock such as cattle, sheep, and goats. To control this disease, an effective vaccine with minimal adverse effects is needed. In order to identify a live vaccine for Johne's disease, we evaluated eight attenuated mutant strains of MAP using a C57BL/6 mouse model. The persistence of the vaccine candidates was measured at 6, 12, and 18 weeks post vaccination. Only strains 320, 321, and 329 colonized both the liver and spleens up until the 12-week time point. The remaining five mutants showed no survival in those tissues, indicating their complete attenuation in the mouse model. The candidate vaccine strains demonstrated different levels of protection based on colonization of the challenge strain in liver and spleen tissues at 12 and 18 weeks post vaccination. Based on total MAP burden in both tissues at both time points, strain 315 (MAP1566::Tn5370) was the most protective whereas strain 318 (intergenic Tn5367 insertion between MAP0282c and MAP0283c) had the most colonization. Mice vaccinated with an undiluted commercial vaccine preparation displayed the highest bacterial burden as well as enlarged spleens indicative of a strong infection. Selected vaccine strains that showed promise in the mouse model were moved forward into a goat challenge model. The results suggest that the mouse trial, as conducted, may have a relatively poor predictive value for protection in a ruminant host such as goats.


Separating Putative Pathogens from Background Contamination with Principal Orthogonal Decomposition: Evidence for Leptospira in the Ugandan Neonatal Septisome.

  • Steven J Schiff‎ et al.
  • Frontiers in medicine‎
  • 2016‎

Neonatal sepsis (NS) is responsible for over 1 million yearly deaths worldwide. In the developing world, NS is often treated without an identified microbial pathogen. Amplicon sequencing of the bacterial 16S rRNA gene can be used to identify organisms that are difficult to detect by routine microbiological methods. However, contaminating bacteria are ubiquitous in both hospital settings and research reagents and must be accounted for to make effective use of these data. In this study, we sequenced the bacterial 16S rRNA gene obtained from blood and cerebrospinal fluid (CSF) of 80 neonates presenting with NS to the Mbarara Regional Hospital in Uganda. Assuming that patterns of background contamination would be independent of pathogenic microorganism DNA, we applied a novel quantitative approach using principal orthogonal decomposition to separate background contamination from potential pathogens in sequencing data. We designed our quantitative approach contrasting blood, CSF, and control specimens and employed a variety of statistical random matrix bootstrap hypotheses to estimate statistical significance. These analyses demonstrate that Leptospira appears present in some infants presenting within 48 h of birth, indicative of infection in utero, and up to 28 days of age, suggesting environmental exposure. This organism cannot be cultured in routine bacteriological settings and is enzootic in the cattle that often live in close proximity to the rural peoples of western Uganda. Our findings demonstrate that statistical approaches to remove background organisms common in 16S sequence data can reveal putative pathogens in small volume biological samples from newborns. This computational analysis thus reveals an important medical finding that has the potential to alter therapy and prevention efforts in a critically ill population.


Cytokine responses of bovine macrophages to diverse clinical Mycobacterium avium subspecies paratuberculosis strains.

  • Harish K Janagama‎ et al.
  • BMC microbiology‎
  • 2006‎

Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease (JD) persistently infects and survives within the host macrophages. While it is established that substantial genotypic variation exists among MAP, evidence for the correlates that associate specific MAP genotypes with clinical or sub-clinical disease phenotypes is presently unknown. Thus we studied strain differences in intracellular MAP survival and host responses in a bovine monocyte derived macrophage (MDM) system.


Identification of sero-reactive antigens for the early diagnosis of Johne's disease in cattle.

  • Lingling Li‎ et al.
  • PloS one‎
  • 2017‎

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD), a chronic intestinal inflammatory disease of cattle and other ruminants. JD has a high herd prevalence and causes serious animal health problems and significant economic loss in domesticated ruminants throughout the world. Since serological detection of MAP infected animals during the early stages of infection remains challenging due to the low sensitivity of extant assays, we screened 180 well-characterized serum samples using a whole proteome microarray from Mycobacterium tuberculosis (MTB), a close relative of MAP. Based on extensive testing of serum and milk samples, fecal culture and qPCR for direct detection of MAP, the samples were previously assigned to one of 4 groups: negative low exposure (n = 30, NL); negative high exposure (n = 30, NH); fecal positive, ELISA negative (n = 60, F+E-); and fecal positive, ELISA positive (n = 60, F+E+). Of the 740 reactive proteins, several antigens were serologically recognized early but not late in infection, suggesting a complex and dynamic evolution of the MAP humoral immune response during disease progression. Ordinal logistic regression models identified a subset of 47 candidate proteins with significantly different normalized intensity values (p<0.05), including 12 in the NH and 23 in F+E- groups, suggesting potential utility for the early detection of MAP infected animals. Next, the diagnostic utility of four MAP orthologs (MAP1569, MAP2942c, MAP2609, and MAP1272c) was assessed and reveal moderate to high diagnostic sensitivities (range 48.3% to 76.7%) and specificity (range 96.7% to 100%), with a combined 88.3% sensitivity and 96.7% specificity. Taken together, the results of our analyses have identified several candidate MAP proteins of potential utility for the early detection of MAP infection, as well individual MAP proteins that may serve as the foundation for the next generation of well-defined serological diagnosis of JD in cattle.


Prevalence of Bovine Tuberculosis in India: A systematic review and meta-analysis.

  • Sreenidhi Srinivasan‎ et al.
  • Transboundary and emerging diseases‎
  • 2018‎

Bovine tuberculosis (bTB) is a chronic disease of cattle that impacts productivity and represents a major public health threat. Despite the considerable economic costs and zoonotic risk consequences associated with the disease, accurate estimates of bTB prevalence are lacking in many countries, including India, where national control programmes are not yet implemented and the disease is considered endemic. To address this critical knowledge gap, we performed a systematic review of the literature and a meta-analysis to estimate bTB prevalence in cattle in India and provide a foundation for the future formulation of rational disease control strategies and the accurate assessment of economic and health impact risks. The literature search was performed in accordance with PRISMA guidelines and identified 285 cross-sectional studies on bTB in cattle in India across four electronic databases and handpicked publications. Of these, 44 articles were included, contributing a total of 82,419 cows and buffaloes across 18 states and one union territory in India. Based on a random-effects (RE) meta-regression model, the analysis revealed a pooled prevalence estimate of 7.3% (95% CI: 5.6, 9.5), indicating that there may be an estimated 21.8 million (95% CI: 16.6, 28.4) infected cattle in India-a population greater than the total number of dairy cows in the United States. The analyses further suggest that production system, species, breed, study location, diagnostic technique, sample size and study period are likely moderators of bTB prevalence in India and need to be considered when developing future disease surveillance and control programmes. Taken together with the projected increase in intensification of dairy production and the subsequent increase in the likelihood of zoonotic transmission, the results of our study suggest that attempts to eliminate tuberculosis from humans will require simultaneous consideration of bTB control in cattle population in countries such as India.


A Defined Antigen Skin Test That Enables Implementation of BCG Vaccination for Control of Bovine Tuberculosis: Proof of Concept.

  • Sreenidhi Srinivasan‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

In most low- and middle-income countries (LMICs), bovine tuberculosis (bTB) remains endemic due to the absence of control programs. This is because successful bTB control and eradication programs have relied on test-and-slaughter strategies that are socioeconomically unfeasible in LMICs. While Bacillus Calmette-Guérin (BCG) vaccine-induced protection for cattle has long been documented in experimental and field trials, its use in control programs has been precluded by the inability to differentiate BCG-vaccinated from naturally infected animals using the OIE-prescribed purified protein derivative (PPD)-based tuberculin skin tests. In the current study, the diagnostic specificity and capability for differentiating infected from vaccinated animals (DIVA) of a novel defined antigen skin test (DST) in BCG-vaccinated (Bos taurus ssp. taurus x B. t. ssp. indicus) calves were compared with the performance of traditional PPD-tuberculin in both the skin test and in vitro interferon-gamma release assay (IGRA). The IFN-γ production from whole blood cells stimulated with both PPDs increased significantly from the 0 week baseline levels, while DST induced no measurable IFN-γ production in BCG-vaccinated calves. None of the 15 BCG-vaccinated calves were reactive with the DST skin test (100% specificity; one-tailed lower 95% CI: 82). In contrast, 10 of 15 BCG-vaccinated calves were classified as reactors with the PPD-based single intradermal test (SIT) (specificity in vaccinated animals = 33%; 95% CI: 12, 62). Taken together, the results provide strong evidence that the DST is highly specific and enables DIVA capability in both skin and IGRA assay format, thereby enabling the implementation of BCG vaccine-based bTB control, particularly in settings where test and slaughter remain unfeasible.


Reconsidering Mycobacterium bovis as a proxy for zoonotic tuberculosis: a molecular epidemiological surveillance study.

  • Shannon C Duffy‎ et al.
  • The Lancet. Microbe‎
  • 2020‎

Zoonotic tuberculosis is defined as human infection with Mycobacterium bovis. Although globally, India has the largest number of human tuberculosis cases and the largest cattle population, in which bovine tuberculosis is endemic, the burden of zoonotic tuberculosis is unknown. The aim of this study was to obtain estimates of the human prevalence of animal-associated members of the Mycobacterium tuberculosis complex (MTBC) at a large referral hospital in India.


Limited window for donation of convalescent plasma with high live-virus neutralizing antibody titers for COVID-19 immunotherapy.

  • Abhinay Gontu‎ et al.
  • Communications biology‎
  • 2021‎

Millions of individuals who have recovered from SARS-CoV-2 infection may be eligible to participate in convalescent plasma donor programs, yet the optimal window for donating high neutralizing titer convalescent plasma for COVID-19 immunotherapy remains unknown. Here we studied the response trajectories of antibodies directed to the SARS-CoV-2 surface spike glycoprotein and in vitro SARS-CoV-2 live virus neutralizing titers (VN) in 175 convalescent donors longitudinally sampled for up to 142 days post onset of symptoms (DPO). We observed robust IgM, IgG, and viral neutralization responses to SARS-CoV-2 that persist, in the aggregate, for at least 100 DPO. However, there is a notable decline in VN titers ≥160 for convalescent plasma therapy, starting 60 DPO. The results also show that individuals 30 years of age or younger have significantly lower VN, IgG and IgM antibody titers than those in the older age groups; and individuals with greater disease severity also have significantly higher IgM and IgG antibody titers. Taken together, these findings define the optimal window for donating convalescent plasma useful for immunotherapy of COVID-19 patients and reveal important predictors of an ideal plasma donor.


Monoclonal Antibodies to S and N SARS-CoV-2 Proteins as Probes to Assess Structural and Antigenic Properties of Coronaviruses.

  • Rinki Kumar‎ et al.
  • Viruses‎
  • 2021‎

Antibodies targeting the spike (S) and nucleocapsid (N) proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential tools. In addition to important roles in the treatment and diagnosis of infection, the availability of high-quality specific antibodies for the S and N proteins is essential to facilitate basic research of virus replication and in the characterization of mutations responsible for variants of concern. We have developed panels of mouse and rabbit monoclonal antibodies (mAbs) to the SARS-CoV-2 spike receptor-binding domain (S-RBD) and N protein for functional and antigenic analyses. The mAbs to the S-RBD were tested for neutralization of native SARS-CoV-2, with several exhibiting neutralizing activity. The panels of mAbs to the N protein were assessed for cross-reactivity with the SARS-CoV and Middle East respiratory syndrome (MERS)-CoV N proteins and could be subdivided into sets that showed unique specificity for SARS-CoV-2 N protein, cross-reactivity between SARS-CoV-2 and SARS-CoV N proteins only, or cross-reactivity to all three coronavirus N proteins tested. Partial mapping of N-reactive mAbs were conducted using truncated fragments of the SARS-CoV-2 N protein and revealed near complete coverage of the N protein. Collectively, these sets of mouse and rabbit monoclonal antibodies can be used to examine structure/function studies for N proteins and to define the surface location of virus neutralizing epitopes on the RBD of the S protein.


Detection of Newcastle disease virus and assessment of associated relative risk in backyard and commercial poultry in Kerala, India.

  • Chintu Ravishankar‎ et al.
  • Veterinary medicine and science‎
  • 2022‎

Newcastle disease (ND) is an economically important viral disease affecting the poultry industry. In Kerala, a state in South India, incidences of ND in commercial and backyard poultry have been reported. But a systematic statewide study on the prevalence of the disease has not been carried out.


Development and Validation of Indirect Enzyme-Linked Immunosorbent Assays for Detecting Antibodies to SARS-CoV-2 in Cattle, Swine, and Chicken.

  • Abhinay Gontu‎ et al.
  • Viruses‎
  • 2022‎

Multiple domestic and wild animal species are susceptible to SARS-CoV-2 infection. Cattle and swine are susceptible to experimental SARS-CoV-2 infection. The unchecked transmission of SARS-CoV-2 in animal hosts could lead to virus adaptation and the emergence of novel variants. In addition, the spillover and subsequent adaptation of SARS-CoV-2 in livestock could significantly impact food security as well as animal and public health. Therefore, it is essential to monitor livestock species for SARS-CoV-2 spillover. We developed and optimized species-specific indirect ELISAs (iELISAs) to detect anti-SARS-CoV-2 antibodies in cattle, swine, and chickens using the spike protein receptor-binding domain (RBD) antigen. Serum samples collected prior to the COVID-19 pandemic were used to determine the cut-off threshold. RBD hyperimmunized sera from cattle (n = 3), swine (n = 6), and chicken (n = 3) were used as the positive controls. The iELISAs were evaluated compared to a live virus neutralization test using cattle (n = 150), swine (n = 150), and chicken (n = 150) serum samples collected during the COVID-19 pandemic. The iELISAs for cattle, swine, and chicken were found to have 100% sensitivity and specificity. These tools facilitate the surveillance that is necessary to quickly identify spillovers into the three most important agricultural species worldwide.


An imputed ancestral reference genome for the Mycobacterium tuberculosis complex better captures structural genomic diversity for reference-based alignment workflows.

  • Luke B Harrison‎ et al.
  • Microbial genomics‎
  • 2024‎

Reference-based alignment of short-reads is a widely used technique in genomic analysis of the Mycobacterium tuberculosis complex (MTBC) and the choice of reference sequence impacts the interpretation of analyses. The most widely used reference genomes include the ATCC type strain (H37Rv) and the putative MTBC ancestral sequence of Comas et al. both of which are based on a lineage 4 sequence. As such, these reference sequences do not capture all of the structural variation known to be present in the ancestor of the MTBC. To better represent the base of the MTBC, we generated an imputed ancestral genomic sequence, termed MTBC0 from reference-free alignments of closed MTBC genomes. When used as a reference sequence in alignment workflows, MTBC0 mapped more short sequencing reads and called more pairwise SNPs relative to the Comas et al. sequence while exhibiting minimal impact on the overall phylogeny of MTBC. The results also show that MTBC0 provides greater fidelity in capturing genomic variation and allows for the inclusion of regions absent from H37Rv in standard MTBC workflows without additional steps. The use of MTBC0 as an ancestral reference sequence in standard workflows modestly improved read mapping, SNP calling and intuitively facilitates the study of structural variation and evolution in MTBC.


Complete Genome Sequences of Newcastle Disease Virus Isolates from Backyard Chickens in Northern India.

  • Sushila Maan‎ et al.
  • Microbiology resource announcements‎
  • 2019‎

The molecular characterization of three Newcastle disease viruses (NDV) isolated from backyard chickens in the state of Haryana, India, was undertaken. Two genotype II strains and one genotype XIIIc class II isolate with genome sizes of 15,186 and 15,192 nucleotides (nt), respectively, were identified.


Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection.

  • Megan A Schilling‎ et al.
  • Frontiers in genetics‎
  • 2018‎

Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV) infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2) and Leghorn (Ghs6 and Ghs13) sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens.


Full-genome dissection of an epidemic of severe invasive disease caused by a hypervirulent, recently emerged clone of group A Streptococcus.

  • Nahuel Fittipaldi‎ et al.
  • The American journal of pathology‎
  • 2012‎

Group A Streptococcus (GAS) causes an exceptionally broad range of infections in humans, from relatively mild pharyngitis and skin infections to life-threatening necrotizing fasciitis and toxic shock syndrome. An epidemic of severe invasive human infections caused by type emm59 GAS, heretofore an exceedingly rare cause of disease, spread west to east across Canada over a 3-year period (2006 to 2008). By sequencing the genomes of 601 epidemic, historic, and other emm59 organisms, we discovered that a recently emerged, genetically distinct emm59 clone is responsible for the Canadian epidemic. Using near-real-time genome sequencing, we were able to show spread of the Canadian epidemic clone into the United States. The extensive genome data permitted us to identify patterns of geographic dissemination as well as links between emm59 subclonal lineages that cause infections. Mouse and nonhuman primate models of infection demonstrated that the emerged clone is unusually virulent. Transmission of epidemic emm59 strains may have occurred primarily by skin contact, as suggested by an experimental model of skin transmission. In addition, the emm59 strains had a significantly impaired ability to persist in human saliva and to colonize the oropharynx of mice, and seldom caused human pharyngitis. Our study contributes new information to the rapidly emerging field of molecular pathogenomics of bacterial epidemics and illustrates how full-genome data can be used to precisely illuminate the landscape of strain dissemination during a bacterial epidemic.


Molecular correlates of host specialization in Staphylococcus aureus.

  • Lisa Herron-Olson‎ et al.
  • PloS one‎
  • 2007‎

The majority of Staphylococcus aureus isolates that are recovered from either serious infections in humans or from mastitis in cattle represent genetically distinct sets of clonal groups. Moreover, population genetic analyses have provided strong evidence of host specialization among S. aureus clonal groups associated with human and ruminant infection. However, the molecular basis of host specialization in S. aureus is not understood.


Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer.

  • Suresh V Kuchipudi‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Many animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and could act as reservoirs; however, transmission in free-living animals has not been documented. White-tailed deer, the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns can transmit the virus. To test the hypothesis that SARS-CoV-2 is circulating in deer, 283 retropharyngeal lymph node (RPLN) samples collected from 151 free-living and 132 captive deer in Iowa from April 2020 through January of 2021 were assayed for the presence of SARS-CoV-2 RNA. Ninety-four of the 283 (33.2%) deer samples were positive for SARS-CoV-2 RNA as assessed by RT-PCR. Notably, following the November 2020 peak of human cases in Iowa, and coinciding with the onset of winter and the peak deer hunting season, SARS-CoV-2 RNA was detected in 80 of 97 (82.5%) RPLN samples collected over a 7-wk period. Whole genome sequencing of all 94 positive RPLN samples identified 12 SARS-CoV-2 lineages, with B.1.2 (n = 51; 54.5%) and B.1.311 (n = 19; 20%) accounting for ∼75% of all samples. The geographic distribution and nesting of clusters of deer and human lineages strongly suggest multiple human-to-deer transmission events followed by subsequent deer-to-deer spread. These discoveries have important implications for the long-term persistence of the SARS-CoV-2 pandemic. Our findings highlight an urgent need for a robust and proactive "One Health" approach to obtain enhanced understanding of the ecology, molecular evolution, and dissemination of SARS-CoV-2.


Bovine tuberculosis prevalence and risk factors in selected districts of Bangladesh.

  • S K Shaheenur Islam‎ et al.
  • PloS one‎
  • 2020‎

A cross-sectional survey was conducted in selected districts of Bangladesh to estimate the prevalence of bovine tuberculosis (bTB), and to identify the risk factors for bTB. We included 1865 farmed cattle from 79 herds randomly selected from five districts. Herd and animal level data were collected using semi-structured interviews with cattle herd owners. The single intradermal comparative tuberculin test (SICTT) was used to estimate the prevalence of bTB. The risk factors were identified using mixed-effect multiple logistic regression analyses. The overall herd and animal level prevalences of bTB were estimated to be 45.6% (95% Confidence Interval [CI] = 34.3-57.2%) and 11.3 (95% CI = 9.9-12.8%), respectively, using the OIE recommended >4 mm cut-off. The true animal level prevalence of bTB was estimated to be 11.8 (95% Credible Interval = 2.1-20.3%). At the herd level, farm size, bTB history of the farm and type of husbandry were significantly associated with bTB status in univariable analysis. Similarly, age group, sex, pregnancy status and parity were significantly associated with bTB at cattle level. However, in multivariable analysis only herd size at the herd level and age group and pregnancy status at the cattle level were significant. Compared to a herd size of 1-10, the odds of bTB were 22.8 (95% CI: 5.2-100.9) and 45.6 times (95% CI: 5.0-417.7) greater in herd sizes of >20-50 and >50, respectively. The odds of bTB were 2.2 (95% CI: 1.0-4.5) and 2.5 times (95% CI: 1.1-5.4) higher in cattle aged >3-6 years and > 6 years, compared to cattle aged ≤1 year. Pregnancy increased the odds of bTB by 1.7 times (95% CI: 1.2-2.4) compared to non-pregnant cattle. Taken together, the results suggest high herd and animal level prevalence of bTB in these 5 districts, with the greatest risk of bTB in older and pregnant cattle within large herds (>20), and highlight an urgent need for continued surveillance and implementation of bTB control programs in Bangladesh.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: