Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations.

  • Hongyu Li‎ et al.
  • Autophagy‎
  • 2019‎

Heterozygous mutations in GBA, the gene encoding the lysosomal enzyme glucosylceramidase beta/β-glucocerebrosidase, comprise the most common genetic risk factor for Parkinson disease (PD), but the mechanisms underlying this association remain unclear. Here, we show that in GbaL444P/WT knockin mice, the L444P heterozygous Gba mutation triggers mitochondrial dysfunction by inhibiting autophagy and mitochondrial priming, two steps critical for the selective removal of dysfunctional mitochondria by autophagy, a process known as mitophagy. In SHSY-5Y neuroblastoma cells, the overexpression of L444P GBA impeded mitochondrial priming and autophagy induction when endogenous lysosomal GBA activity remained intact. By contrast, genetic depletion of GBA inhibited lysosomal clearance of autophagic cargo. The link between heterozygous GBA mutations and impaired mitophagy was corroborated in postmortem brain tissue from PD patients carrying heterozygous GBA mutations, where we found increased mitochondrial content, mitochondria oxidative stress and impaired autophagy. Our findings thus suggest a mechanistic basis for mitochondrial dysfunction associated with GBA heterozygous mutations. Abbreviations: AMBRA1: autophagy/beclin 1 regulator 1; BECN1: beclin 1, autophagy related; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; CCCP: carbonyl cyanide 3-chloroyphenylhydrazone; CYCS: cytochrome c, somatic; DNM1L/DRP1: dynamin 1-like; ER: endoplasmic reticulum; GBA: glucosylceramidase beta; GBA-PD: Parkinson disease with heterozygous GBA mutations; GD: Gaucher disease; GFP: green fluorescent protein; LC3B: microtubule-associated protein 1 light chain 3 beta; LC3B-II: lipidated form of microtubule-associated protein 1 light chain 3 beta; MitoGreen: MitoTracker Green; MitoRed: MitoTracker Red; MMP: mitochondrial membrane potential; MTOR: mechanistic target of rapamycin kinase; MYC: MYC proto-oncogene, bHLH transcription factor; NBR1: NBR1, autophagy cargo receptor; Non-GBA-PD: Parkinson disease without GBA mutations; PD: Parkinson disease; PINK1: PTEN induced putative kinase 1; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; RFP: red fluorescent protein; ROS: reactive oxygen species; SNCA: synuclein alpha; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; VDAC1/Porin: voltage dependent anion channel 1; WT: wild type.


Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits.

  • Guomei Tang‎ et al.
  • Neuron‎
  • 2014‎

Developmental alterations of excitatory synapses are implicated in autism spectrum disorders (ASDs). Here, we report increased dendritic spine density with reduced developmental spine pruning in layer V pyramidal neurons in postmortem ASD temporal lobe. These spine deficits correlate with hyperactivated mTOR and impaired autophagy. In Tsc2 ± ASD mice where mTOR is constitutively overactive, we observed postnatal spine pruning defects, blockade of autophagy, and ASD-like social behaviors. The mTOR inhibitor rapamycin corrected ASD-like behaviors and spine pruning defects in Tsc2 ± mice, but not in Atg7(CKO) neuronal autophagy-deficient mice or Tsc2 ± :Atg7(CKO) double mutants. Neuronal autophagy furthermore enabled spine elimination with no effects on spine formation. Our findings suggest that mTOR-regulated autophagy is required for developmental spine pruning, and activation of neuronal autophagy corrects synaptic pathology and social behavior deficits in ASD models with hyperactivated mTOR.


Mitochondrial abnormalities in temporal lobe of autistic brain.

  • Guomei Tang‎ et al.
  • Neurobiology of disease‎
  • 2013‎

Autism spectrum disorder (ASD) consists of a group of complex developmental disabilities characterized by impaired social interactions, deficits in communication and repetitive behavior. Multiple lines of evidence implicate mitochondrial dysfunction in ASD. In postmortem BA21 temporal cortex, a region that exhibits synaptic pathology in ASD, we found that compared to controls, ASD patients exhibited altered protein levels of mitochondria respiratory chain protein complexes, decreased Complex I and IV activities, decreased mitochondrial antioxidant enzyme SOD2, and greater oxidative DNA damage. Mitochondrial membrane mass was higher in ASD brain, as indicated by higher protein levels of mitochondrial membrane proteins Tom20, Tim23 and porin. No differences were observed in either mitochondrial DNA or levels of the mitochondrial gene transcription factor TFAM or cofactor PGC1α, indicating that a mechanism other than alterations in mitochondrial genome or mitochondrial biogenesis underlies these mitochondrial abnormalities. We further identified higher levels of the mitochondrial fission proteins (Fis1 and Drp1) and decreased levels of the fusion proteins (Mfn1, Mfn2 and Opa1) in ASD patients, indicating altered mitochondrial dynamics in ASD brain. Many of these changes were evident in cortical pyramidal neurons, and were observed in ASD children but were less pronounced or absent in adult patients. Together, these findings provide evidence that mitochondrial function and intracellular redox status are compromised in pyramidal neurons in ASD brain and that mitochondrial dysfunction occurs during early childhood when ASD symptoms appear.


The Efficacy and Safety of Transcranial Direct Current Stimulation for Cerebellar Ataxia: a Systematic Review and Meta-Analysis.

  • Tiffany X Chen‎ et al.
  • Cerebellum (London, England)‎
  • 2021‎

A promising new approach, transcranial direct current stimulation (tDCS) has recently been used as a therapeutic modality for cerebellar ataxia. However, the strength of the conclusions drawn from individual studies in the current literature may be constrained by the small sample size of each trial. Following a systematic literature retrieval of studies, meta-analyses were conducted by pooling the standardized mean differences (SMDs) using random-effects models to assess the efficacy of tDCS on cerebellar ataxia, measured by standard clinical rating scales. Domain-specific effects of tDCS on gait and hand function were further evaluated based on 8-m walk and 9-hole peg test performance times, respectively. To determine the safety of tDCS, the incidences of adverse effects were analyzed using risk differences. Out of 293 citations, 5 randomized controlled trials involving a total of 72 participants with cerebellar ataxia were included. Meta-analysis indicated a 26.1% (p = 0.003) improvement in ataxia immediately after tDCS with sustained efficacy over months (28.2% improvement after 3 months, p = 0.04) when compared with sham stimulation. tDCS seems to be domain-specific as the current analysis suggested a positive effect on gait (16.3% improvement, p = 0.04) and failed to reveal differences for hand function (p = 0.10) with respect to sham. The incidence of adverse events in tDCS and sham groups was similar. tDCS is an effective intervention for mitigating ataxia symptoms with lasting results that can be sustained for months. This treatment shows preferential effects on gait ataxia and is relatively safe.


Longitudinal Measurements of Glucocerebrosidase activity in Parkinson's patients.

  • Roy N Alcalay‎ et al.
  • Annals of clinical and translational neurology‎
  • 2020‎

Reduction in glucocerebrosidase (GCase; encoded by GBA) enzymatic activity has been linked to Parkinson's disease (PD). Here, we correlated GCase activity and PD phenotype in the Parkinson's Progression Markers Initiative (PPMI) cohort.


A double-hit in vivo model of GBA viral microRNA-mediated downregulation and human alpha-synuclein overexpression demonstrates nigrostriatal degeneration.

  • Alexia Polissidis‎ et al.
  • Neurobiology of disease‎
  • 2022‎

Preclinical and clinical studies support a strong association between mutations in the GBA1 gene that encodes beta-glucocerebrosidase (GCase) (EC 3.2.1.45; glucosylceramidase beta) and Parkinson's disease (PD). Alpha-synuclein (AS), a key player in PD pathogenesis, and GBA1 mutations may independently and synergistically cause lysosomal dysfunction and thus, embody clinically well-validated targets of the neurodegenerative disease process in PD. However, in vivo models, recapitulating pathological features of PD that can be used to dissect the nature of the complex relationship between GCase and AS on the nigrostriatal axis, the region particularly vulnerable in PD, are direly needed. To address this, we implemented a bidirectional approach in mice to examine the effects of: 1) GCase overexpression (wild-type and mutant N370S GBA) on endogenous AS levels and 2) downregulation of endogenous GCase (Gba) combined with AS overexpression. Striatal delivery of viral-mediated GCase overexpression revealed minimal effects on cortical and nigrostriatal AS tissue levels and no significant effect on dopaminergic system integrity. On the other hand, microRNA (miR)-mediated Gba1 downregulation (miR Gba), combined with virus-mediated human AS overexpression (+AS), yields decreased GCase activity in the cortex, mimicking levels seen in GBA1 heterozygous carriers (30-40%), increased astrogliosis and microgliosis, decreased striatal dopamine levels (50% compared to controls) and loss of nigral dopaminergic neurons (~33%)- effects that were all reversible with miR rescue. Most importantly, the synergistic neurodegeneration of miR Gba + AS correlated with augmented AS accumulation and extracellular release in the striatum. Collectively, our results suggest that GCase downregulation alone is not sufficient to recapitulate key pathological features of PD in vivo, but its synergistic interplay with AS, via increased AS levels and extracellular release, drives nigrostriatal neurodegeneration. Furthermore, we report a novel double-hit GBA-AS model that can be used to identify putative mechanisms driving PD pathophysiology and can be subsequently used to test novel therapeutic approaches.


Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy.

  • Sheng-Han Kuo‎ et al.
  • Science advances‎
  • 2022‎

The most common genetic risk factors for Parkinson's disease (PD) are a set of heterozygous mutant (MT) alleles of the GBA1 gene that encodes β-glucocerebrosidase (GCase), an enzyme normally trafficked through the ER/Golgi apparatus to the lysosomal lumen. We found that half of the GCase in lysosomes from postmortem human GBA-PD brains was present on the lysosomal surface and that this mislocalization depends on a pentapeptide motif in GCase used to target cytosolic protein for degradation by chaperone-mediated autophagy (CMA). MT GCase at the lysosomal surface inhibits CMA, causing accumulation of CMA substrates including α-synuclein. Single-cell transcriptional analysis and proteomics of brains from GBA-PD patients confirmed reduced CMA activity and proteome changes comparable to those in CMA-deficient mouse brain. Loss of the MT GCase CMA motif rescued primary substantia nigra dopaminergic neurons from MT GCase-induced neuronal death. We conclude that MT GBA1 alleles block CMA function and produce α-synuclein accumulation.


Murine Models of Lysosomal Storage Diseases Exhibit Differences in Brain Protein Aggregation and Neuroinflammation.

  • Jennifer Clarke‎ et al.
  • Biomedicines‎
  • 2021‎

Genetic, epidemiological and experimental evidence implicate lysosomal dysfunction in Parkinson's disease (PD) and related synucleinopathies. Investigate several mouse models of lysosomal storage diseases (LSDs) and evaluate pathologies reminiscent of synucleinopathies. We obtained brain tissue from symptomatic mouse models of Gaucher, Fabry, Sandhoff, Niemann-Pick A (NPA), Hurler, Pompe and Niemann-Pick C (NPC) diseases and assessed for the presence of Lewy body-like pathology (proteinase K-resistant α-synuclein and tau aggregates) and neuroinflammation (microglial Iba1 and astrocytic GFAP) by immunofluorescence. All seven LSD models exhibited evidence of proteinopathy and/or inflammation in the central nervous system (CNS). However, these phenotypes were divergent. Gaucher and Fabry mouse models displayed proteinase K-resistant α-synuclein and tau aggregates but no neuroinflammation; whereas Sandhoff, NPA and NPC showed marked neuroinflammation and no overt proteinopathy. Pompe disease animals uniquely displayed widespread distribution of tau aggregates accompanied by moderate microglial activation. Hurler mice also demonstrated proteinopathy and microglial activation. The present study demonstrated additional links between LSDs and pathogenic phenotypes that are hallmarks of synucleinopathies. The data suggest that lysosomal dysregulation can contribute to brain region-specific protein aggregation and induce widespread neuroinflammation in the brain. However, only a few LSD models examined exhibited phenotypes consistent with synucleinopathies. While no model can recapitulate the complexity of PD, they can enable the study of specific pathways and mechanisms contributing to disease pathophysiology. The present study provides evidence that there are existing, previously unutilized mouse models that can be employed to study pathogenic mechanisms and gain insights into potential PD subtypes, helping to determine if they are amenable to pathway-specific therapeutic interventions.


Dl-3-n-Butylphthalide Exerts Dopaminergic Neuroprotection Through Inhibition of Neuroinflammation.

  • Yajing Chen‎ et al.
  • Frontiers in aging neuroscience‎
  • 2019‎

Microglia-mediated neuroinflammation contributes to multiple neurodegenerative disorders, including PD. Therefore, the regulation of microglial activation probably has the therapeutic potential. This study is aimed to determine whether NBP could suppress microglial activation and protect dopaminergic neurons from excessive neuroinflammation. In the present study, MPTP-induced PD model was established to explore the neuroprotective and anti-inflammatory effect of NBP. We assessed motor deficits, dopaminergic neurodegeneration and microglial activation in PD mice. In vitro, the anti-inflammatory activity of NBP was confirmed by cell viability assay of SH-SY5Y cells after being treated with conditioned medium from LPS-stimulated BV-2 cells and from 1-Methyl-4-phenylpyridinium iodide (MPP+)-stimulated BV-2 cells. The expression of pro-inflammatory molecules was determined by RT-PCR, Western Blot and ELISA assay. The generation of NO and ROS were also assessed. The involvement of signaling pathways such as MAPK, NF-κB, and PI3k/Akt were further investigated by Western Blot and immunofluorescence assay. The neuroprotective effect of NBP was demonstrated in vivo as shown by the improvement of dopaminergic neurodegeneration, motor deficits and microglial activation in MPTP-induced mouse model of PD. The expression of pro-inflammatory mediators was also reduced by NBP administration. In vitro, NBP also protected dopaminergic neurons from neurotoxicity induced by activated microglia. NBP pretreatment not only reduced pro-inflammatory molecules, but also suppressed NO release and ROS generation in BV-2 cells. Further mechanism research suggested that the inactivation of MAPK, NF-κB and PI3K/Akt may involve in anti-neuroinflammation role of NBP. In conclusion, our results revealed that NBP exerted dopaminergic neuroprotection through inhibition of microglia-mediated neuroinflammation, suggesting the promising therapeutic effect of NBP for PD.


Animal Models of Tremor: Relevance to Human Tremor Disorders.

  • Ming-Kai Pan‎ et al.
  • Tremor and other hyperkinetic movements (New York, N.Y.)‎
  • 2018‎

Tremor is the most common movement disorder; however, the pathophysiology of tremor remains elusive. While several neuropathological alterations in tremor disorders have been observed in post-mortem studies of human brains, a full understanding of the relationship between brain circuitry alterations and tremor requires testing in animal models. Additionally, tremor animal models are critical for our understanding of tremor pathophysiology, and/or to serve as a platform for therapy development.


Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and α-synuclein aggregation.

  • Eun-Jin Bae‎ et al.
  • Experimental & molecular medicine‎
  • 2015‎

Lysosomal dysfunction is a common pathological feature of neurodegenerative diseases. GTP-binding protein type A1 (GBA1) encodes β-glucocerebrosidase 1 (GCase 1), a lysosomal hydrolase. Homozygous mutations in GBA1 cause Gaucher disease, the most common lysosomal storage disease, while heterozygous mutations are strong risk factors for Parkinson's disease. However, whether loss of GCase 1 activity is sufficient for lysosomal dysfunction has not been clearly determined. Here, we generated human neuroblastoma cell lines with nonsense mutations in the GBA1 gene using zinc-finger nucleases. Depending on the site of mutation, GCase 1 activity was lost or maintained. The cell line with GCase 1 deficiency showed indications of lysosomal dysfunction, such as accumulation of lysosomal substrates, reduced dextran degradation and accumulation of enlarged vacuolar structures. In contrast, the cell line with C-terminal truncation of GCase 1 but with intact GCase 1 activity showed normal lysosomal function. When α-synuclein was overexpressed, accumulation and secretion of insoluble aggregates increased in cells with GCase 1 deficiency but did not change in mutant cells with normal GCase 1 activity. These results demonstrate that loss of GCase 1 activity is sufficient to cause lysosomal dysfunction and accumulation of α-synuclein aggregates.


The epigenetic regulation of HIF-1α by SIRT1 in MPP(+) treated SH-SY5Y cells.

  • Su-Yan Dong‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Both silent information regulator 1 (SIRT1) and hypoxia inducible factor 1 (HIF-1) have been found to play important roles in the pathophysiology of Parkinson's disease (PD). However, their mechanisms and their relationship still require further study. In the present study, we focused on the change and relationship of SIRT1 and HIF-1α in PD. PD cell models were established by using methyl-4-phenylpyridinium (MPP(+)), which induced inhibition of cell proliferation, cell cycle arrest and apoptosis. We found that the expression of HIF-1α and its target genes VEGFA and LDHA increased and that SIRT1 expression was inhibited in MPP(+) treated cells. With further analysis, we found that the acetylation of H3K14 combined with the HIF-1α promoter was dramatically increased in cells treated with MPP(+), which resulted in the transcriptional activation of HIF-1α. Moreover, the acetylation of H3K14 and the expression of HIF-1α increased when SIRT1 was knocked down, suggesting that SIRT1 was involved in the epigenetic regulation of HIF-1α. At last, phenformin, another mitochondrial complex1 inhibitor, was used to testify that the increased HIF-1a was not due to off target effects of MPP(+). Therefore, our results support a link between PD and SIRT1/HIF-1α signaling, which may serve as a clue for understanding PD.


Glucocerebrosidase modulates cognitive and motor activities in murine models of Parkinson's disease.

  • Edward Rockenstein‎ et al.
  • Human molecular genetics‎
  • 2016‎

Mutations in GBA1, the gene encoding glucocerebrosidase, are associated with an enhanced risk of developing synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies. A higher prevalence and increased severity of motor and non-motor symptoms is observed in PD patients harboring mutant GBA1 alleles, suggesting a link between the gene or gene product and disease development. Interestingly, PD patients without mutations in GBA1 also exhibit lower levels of glucocerebrosidase activity in the central nervous system (CNS), implicating this lysosomal enzyme in disease pathogenesis. Here, we investigated whether modulation of glucocerebrosidase activity in murine models of synucleinopathy (expressing wild type Gba1) affected α-synuclein accumulation and behavioral phenotypes. Partial inhibition of glucocerebrosidase activity in PrP-A53T-SNCA mice using the covalent inhibitor conduritol-B-epoxide induced a profound increase in soluble α-synuclein in the CNS and exacerbated cognitive and motor deficits. Conversely, augmenting glucocerebrosidase activity in the Thy1-SNCA mouse model of PD delayed the progression of synucleinopathy. Adeno-associated virus-mediated expression of glucocerebrosidase in the Thy1-SNCA mouse striatum led to decrease in the levels of the proteinase K-resistant fraction of α-synuclein, amelioration of behavioral aberrations and protection from loss of striatal dopaminergic markers. These data indicate that increasing glucocerebrosidase activity can influence α-synuclein homeostasis, thereby reducing the progression of synucleinopathies. This study provides robust in vivo evidence that augmentation of CNS glucocerebrosidase activity is a potential therapeutic strategy for PD, regardless of the mutation status of GBA1.


Interplay of LRRK2 with chaperone-mediated autophagy.

  • Samantha J Orenstein‎ et al.
  • Nature neuroscience‎
  • 2013‎

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. We found LRRK2 to be degraded in lysosomes by chaperone-mediated autophagy (CMA), whereas the most common pathogenic mutant form of LRRK2, G2019S, was poorly degraded by this pathway. In contrast to the behavior of typical CMA substrates, lysosomal binding of both wild-type and several pathogenic mutant LRRK2 proteins was enhanced in the presence of other CMA substrates, which interfered with the organization of the CMA translocation complex, resulting in defective CMA. Cells responded to such LRRK2-mediated CMA compromise by increasing levels of the CMA lysosomal receptor, as seen in neuronal cultures and brains of LRRK2 transgenic mice, induced pluripotent stem cell-derived dopaminergic neurons and brains of Parkinson's disease patients with LRRK2 mutations. This newly described LRRK2 self-perpetuating inhibitory effect on CMA could underlie toxicity in Parkinson's disease by compromising the degradation of α-synuclein, another Parkinson's disease-related protein degraded by this pathway.


Clinical features of Parkinson's disease with and without rapid eye movement sleep behavior disorder.

  • Ye Liu‎ et al.
  • Translational neurodegeneration‎
  • 2017‎

Rapid eye movement sleep behavior disorder (RBD) and Parkinson's disease (PD) are two distinct clinical diseases but they share some common pathological and anatomical characteristics. This study aims to confirm the clinical features of RBD in Chinese PD patients.


Cerebrospinal fluid proteomics implicates the granin family in Parkinson's disease.

  • Melissa S Rotunno‎ et al.
  • Scientific reports‎
  • 2020‎

Parkinson's disease, the most common age-related movement disorder, is a progressive neurodegenerative disease with unclear etiology. Better understanding of the underlying disease mechanism(s) is an urgent need for the development of disease-modifying therapeutics. Limited studies have been performed in large patient cohorts to identify protein alterations in cerebrospinal fluid (CSF), a proximal site to pathology. We set out to identify disease-relevant protein changes in CSF to gain insights into the etiology of Parkinson's disease and potentially assist in disease biomarker identification. In this study, we used liquid chromatography-tandem mass spectrometry in data-independent acquisition (DIA) mode to identify Parkinson's-relevant biomarkers in cerebrospinal fluid. We quantified 341 protein groups in two independent cohorts (n = 196) and a longitudinal cohort (n = 105 samples, representing 40 patients) consisting of Parkinson's disease and healthy control samples from three different sources. A first cohort of 53 Parkinson's disease and 72 control samples was analyzed, identifying 53 proteins with significant changes (p < 0.05) in Parkinson's disease relative to healthy control. We established a biomarker signature and multiple protein ratios that differentiate Parkinson's disease from healthy controls and validated these results in an independent cohort. The second cohort included 28 Parkinson's disease and 43 control samples. Independent analysis of these samples identified 41 proteins with significant changes. Evaluation of the overlapping changes between the two cohorts identified 13 proteins with consistent and significant changes (p < 0.05). Importantly, we found the extended granin family proteins as reduced in disease, suggesting a potential common mechanism for the biological reduction in monoamine neurotransmission in Parkinson's patients. Our study identifies several novel protein changes in Parkinson's disease cerebrospinal fluid that may be exploited for understanding etiology of disease and for biomarker development.


Glucosylceramide in cerebrospinal fluid of patients with GBA-associated and idiopathic Parkinson's disease enrolled in PPMI.

  • Young Eun Huh‎ et al.
  • NPJ Parkinson's disease‎
  • 2021‎

Protein-coding variants in the GBA gene modulate susceptibility and progression in ~10% of patients with Parkinson's disease (PD). GBA encodes the β-glucocerebrosidase enzyme that hydrolyzes glucosylceramide. We hypothesized that GBA mutations will lead to glucosylceramide accumulation in cerebrospinal fluid (CSF). Glucosylceramide, ceramide, sphingomyelin, and lactosylceramide levels were measured by liquid chromatography-tandem mass spectrometry in CSF of 411 participants from the Parkinson's Progression Markers Initiative (PPMI) cohort, including early stage, de novo PD patients with abnormal dopamine transporter neuroimaging and healthy controls. Forty-four PD patients carried protein-coding GBA variants (GBA-PD) and 227 carried wild-type alleles (idiopathic PD). The glucosylceramide fraction was increased (P = 0.0001), and the sphingomyelin fraction (a downstream metabolite) was reduced (P = 0.0001) in CSF of GBA-PD patients compared to healthy controls. The ceramide fraction was unchanged, and lactosylceramide was below detection limits. We then used the ratio of glucosylceramide to sphingomyelin (the GlcCer/SM ratio) to explore whether these two sphingolipid fractions altered in GBA-PD were useful for stratifying idiopathic PD patients. Idiopathic PD patients in the top quartile of GlcCer/SM ratios at baseline showed a more rapid decline in Montreal Cognitive Assessment scores during longitudinal follow-up compared to those in the lowest quartile with a P-value of 0.036. The GlcCer/SM ratio was negatively associated with α-synuclein levels in CSF of PD patients. This study highlights glucosylceramide as a pathway biomarker for GBA-PD patients and the GlcCer/SM ratio as a potential stratification tool for clinical trials of idiopathic PD patients. Our sphingolipids data together with the clinical, imaging, omics, and genetic characterization of PPMI will contribute a useful resource for multi-modal biomarkers development.


Preclinical pharmacology of glucosylceramide synthase inhibitor venglustat in a GBA-related synucleinopathy model.

  • Catherine Viel‎ et al.
  • Scientific reports‎
  • 2021‎

Mutations in GBA, the gene encoding the lysosomal enzyme glucocerebrosidase (GCase), represent the greatest genetic risk factor for developing synucleinopathies including Parkinson's disease (PD). Additionally, PD patients harboring a mutant GBA allele present with an earlier disease onset and an accelerated disease progression of both motor and non-motor symptoms. Preclinical studies in mouse models of synucleinopathy suggest that modulation of the sphingolipid metabolism pathway via inhibition of glucosylceramide synthase (GCS) using a CNS-penetrant small molecule may be a potential treatment for synucleinopathies. Here, we aim to alleviate the lipid storage burden by inhibiting the de novo synthesis of the primary glycosphingolipid substrate of GCase, glucosylceramide (GlcCer). We have previously shown that systemic GCS inhibition reduced GlcCer and glucosylsphingosine (GlcSph) accumulation, slowed α-synuclein buildup in the hippocampus, and improved cognitive deficits. Here, we studied the efficacy of a brain-penetrant clinical candidate GCS inhibitor, venglustat, in mouse models of GBA-related synucleinopathy, including a heterozygous Gba mouse model which more closely replicates the typical GBA-PD patient genotype. Collectively, these data support the rationale for modulation of GCase-related sphingolipid metabolism as a therapeutic strategy for treating GBA-related synucleinopathies.


Safety, Pharmacokinetics, and Pharmacodynamics of Oral Venglustat in Patients with Parkinson's Disease and a GBA Mutation: Results from Part 1 of the Randomized, Double-Blinded, Placebo-Controlled MOVES-PD Trial.

  • M Judith Peterschmitt‎ et al.
  • Journal of Parkinson's disease‎
  • 2022‎

Glucocerebrosidase gene (GBA) mutations influence risk and prognosis of Parkinson's disease (PD), possibly through accumulation of glycosphingolipids, including glucosylceramide (GL-1). Venglustat is a novel, brain penetrant glucosylceramide synthase inhibitor.


Consensus Paper: Experimental Neurostimulation of the Cerebellum.

  • Lauren N Miterko‎ et al.
  • Cerebellum (London, England)‎
  • 2019‎

The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson's disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimulation is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: