Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Microphysiological system modeling of ochratoxin A-associated nephrotoxicity.

  • Tomoki Imaoka‎ et al.
  • Toxicology‎
  • 2020‎

Ochratoxin A (OTA) is one of the most abundant mycotoxin contaminants in food stuffs and possesses carcinogenic, nephrotoxic, teratogenic, and immunotoxic properties. Specifically, a major concern is severe nephrotoxicity, which is characterized by degeneration of epithelial cells of the proximal tubules and interstitial fibrosis. However, the mechanism of OTA toxicity, as well as the genetic risk factors contributing to its toxicity in humans has been elusive due to the lack of adequate models that fully recapitulate human kidney function in vitro. The present study attempts to evaluate dose-response relationships, identify the contribution of active transport proteins that govern the renal disposition of OTA, and determine the role of metabolism in the bioactivation and detoxification of OTA using a 3D human kidney proximal tubule microphysiological system (kidney MPS). We demonstrated that LC50 values of OTA in kidney MPS culture (0.375-1.21 μM) were in agreement with clinically relevant toxic concentrations of OTA in urine. Surprisingly, no enhancement of kidney injury biomarkers was evident in the effluent of the kidney MPS after OTA exposure despite significant toxicity observed by LIVE/DEAD staining. Instead, these biomarkers decreased in an OTA concentration-dependent manner. Furthermore, the effect of 1-aminobenzotriazole (ABT) and 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol (NBDHEX), pan-inhibitors of P450 and glutathione S-transferase (GST) enzymes, respectively, on OTA-induced toxicity in kidney MPS was examined. These studies revealed significant enhancement of OTA-induced toxicity by NBDHEX (3 μM) treatment, whereas ABT (1 mM) treatment decreased OTA-induced toxicity, suggesting roles for GSTs and P450 enzymes in the detoxification and bioactivation of OTA, respectively. Analysis of transcriptional changes using RNA-sequencing of kidney MPS treated with different concentrations of OTA revealed downregulation of several nuclear factor (erythroid derived-2)-like 2 (NRF2)-regulated genes by OTA treatment, including GSTs. The transcriptional repression of GSTs is likely playing a key role in OTA toxicity via attenuation of glutathione conjugation/detoxification. The sequential molecular events may explain the mechanism of toxicity associated with OTA. Additionally, OTA transport studies using kidney MPS in the presence and absence of probenecid (1 mM) suggested a role for organic anionic membrane transporter(s) in the kidney specific disposition of OTA. Our findings provide a clearer understanding of the mechanism of OTA-induced kidney injury, which may support changes in risk assessment, regulatory agency policies on allowable exposure levels, and determination of the role of genetic factors in populations at risk for OTA nephrotoxicity.


e-PKGene: a knowledge-based research tool for analysing the impact of genetics on drug exposure.

  • Houda Hachad‎ et al.
  • Human genomics‎
  • 2011‎

e-PKGene (www.pharmacogeneticsinfo.org) is a manually curated knowledge product developed in the Department of Pharmaceutics at the University of Washington, USA. The tool integrates information from the literature, public repositories, reference textbooks, product prescribing labels and clinical review sections of new drug approval packages. The database's easy-to-use web portal offers tools for visualisation, reporting and filtering of information. The database helps scientists to mine pharmacokinetic and pharmacodynamic information for drug-metabolising enzymes and transporters, and provides access to available quantitative information on drug exposure contained in the literature. It allows in-depth analysis of the impact of genetic variants of enzymes and transporters on pharmacokinetic responses to drugs and metabolites. This review gives a brief description of the database organisation, its search functionalities and examples of use.


Association of FMO3 Variants and Trimethylamine N-Oxide Concentration, Disease Progression, and Mortality in CKD Patients.

  • Cassianne Robinson-Cohen‎ et al.
  • PloS one‎
  • 2016‎

Elevated levels of circulating pro-atherogenic uremic solutes, particularly trimethylamine N-oxide (TMAO), have been implicated in cardiovascular disease development in patients with chronic kidney disease (CKD). TMAO is generated from trimethylamine (TMA) via metabolism by hepatic flavin-containing monooxygenase isoform 3 (FMO3). We determined the functional effects of three common FMO3 variants at amino acids 158, 308, and 257 on TMAO concentrations in a prospective cohort study and evaluated associations of polymorphisms with CKD progression and mortality. Each additional minor allele at amino acid 158 was associated with a 0.38 μg/mL higher circulating TMAO (p = 0.01) and with faster rates of annualized relative eGFR decline. Participants with 0, 1 and 2 variant alleles averaged an eGFR loss of 8%, 12%, and 14% per year, respectively (p-for trend = 0.05). Compared to participants with the homozygous reference allele, heterozygous and homozygous variant participants had a 2.0-fold (95% CI: 0.85, 4.6) and 2.2-fold (95% CI: 0.89, 5.48) higher risk of mortality, respectively (p-for-trend = 0.04). No associations with clinical outcomes were observed for allelic variants at amino acids 257 or 308. Understanding the contribution of genetic variation of FMO3 to disease progression and all-cause mortality can guide recommendations for diet modification or pharmacotherapy in CKD patients at increased risk of adverse outcomes.


Bridging the gap between in silico and in vivo by modeling opioid disposition in a kidney proximal tubule microphysiological system.

  • Tomoki Imaoka‎ et al.
  • Scientific reports‎
  • 2021‎

Opioid overdose, dependence, and addiction are a major public health crisis. Patients with chronic kidney disease (CKD) are at high risk of opioid overdose, therefore novel methods that provide accurate prediction of renal clearance (CLr) and systemic disposition of opioids in CKD patients can facilitate the optimization of therapeutic regimens. The present study aimed to predict renal clearance and systemic disposition of morphine and its active metabolite morphine-6-glucuronide (M6G) in CKD patients using a vascularized human proximal tubule microphysiological system (VPT-MPS) coupled with a parent-metabolite full body physiologically-based pharmacokinetic (PBPK) model. The VPT-MPS, populated with a human umbilical vein endothelial cell (HUVEC) channel and an adjacent human primary proximal tubular epithelial cells (PTEC) channel, successfully demonstrated secretory transport of morphine and M6G from the HUVEC channel into the PTEC channel. The in vitro data generated by VPT-MPS were incorporated into a mechanistic kidney model and parent-metabolite full body PBPK model to predict CLr and systemic disposition of morphine and M6G, resulting in successful prediction of CLr and the plasma concentration-time profiles in both healthy subjects and CKD patients. A microphysiological system together with mathematical modeling successfully predicted renal clearance and systemic disposition of opioids in CKD patients and healthy subjects.


Development of a microphysiological model of human kidney proximal tubule function.

  • Elijah J Weber‎ et al.
  • Kidney international‎
  • 2016‎

The kidney proximal tubule is the primary site in the nephron for excretion of waste products through a combination of active uptake and secretory processes and is also a primary target of drug-induced nephrotoxicity. Here, we describe the development and functional characterization of a 3-dimensional flow-directed human kidney proximal tubule microphysiological system. The system replicates the polarity of the proximal tubule, expresses appropriate marker proteins, exhibits biochemical and synthetic activities, as well as secretory and reabsorptive processes associated with proximal tubule function in vivo. This microphysiological system can serve as an ideal platform for ex vivo modeling of renal drug clearance and drug-induced nephrotoxicity. Additionally, this novel system can be used for preclinical screening of new chemical compounds prior to initiating human clinical trials.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: