Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Regulation of TGF-β receptor hetero-oligomerization and signaling by endoglin.

  • Leslie Pomeraniec‎ et al.
  • Molecular biology of the cell‎
  • 2015‎

Complex formation among transforming growth factor-β (TGF-β) receptors and its modulation by coreceptors represent an important level of regulation for TGF-β signaling. Oligomerization of ALK5 and the type II TGF-β receptor (TβRII) has been thoroughly investigated, both in vitro and in intact cells. However, such studies, especially in live cells, are missing for the endothelial cell coreceptor endoglin and for the ALK1 type I receptor, which enables endothelial cells to respond to TGF-β by activation of both Smad2/3 and Smad1/5/8. Here we combined immunoglobulin G-mediated immobilization of one cell-surface receptor with lateral mobility studies of a coexpressed receptor by fluorescence recovery after photobleaching (FRAP) to demonstrate that endoglin forms stable homodimers that function as a scaffold for binding TβRII, ALK5, and ALK1. ALK1 and ALK5 bind to endoglin with differential dependence on TβRII, which plays a major role in recruiting ALK5 to the complex. Signaling data indicate a role for the quaternary receptor complex in regulating the balance between TGF-β signaling to Smad1/5/8 and to Smad2/3.


ALK1 regulates the internalization of endoglin and the type III TGF-β receptor.

  • Keren Tazat‎ et al.
  • Molecular biology of the cell‎
  • 2021‎

Complex formation and endocytosis of transforming growth factor-β (TGF-β) receptors play important roles in signaling. However, their interdependence remained unexplored. Here, we demonstrate that ALK1, a TGF-β type I receptor prevalent in endothelial cells, forms stable complexes at the cell surface with endoglin and with type III TGF-β receptors (TβRIII). We show that ALK1 undergoes clathrin-mediated endocytosis (CME) faster than ALK5, type II TGF-β receptor (TβRII), endoglin, or TβRIII. These complexes regulate the endocytosis of the TGF-β receptors, with a major effect mediated by ALK1. Thus, ALK1 enhances the endocytosis of TβRIII and endoglin, while ALK5 and TβRII mildly enhance endoglin, but not TβRIII, internalization. Conversely, the slowly endocytosed endoglin has no effect on the endocytosis of either ALK1, ALK5, or TβRII, while TβRIII has a differential effect, slowing the internalization of ALK5 and TβRII, but not ALK1. Such effects may be relevant to signaling, as BMP9-mediated Smad1/5/8 phosphorylation is inhibited by CME blockade in endothelial cells. We propose a model that links TGF-β receptor oligomerization and endocytosis, based on which endocytosis signals are exposed/functional in specific receptor complexes. This has broad implications for signaling, implying that complex formation among various receptors regulates their surface levels and signaling intensities.


NRP1 interacts with endoglin and VEGFR2 to modulate VEGF signaling and endothelial cell sprouting.

  • Swati Sharma‎ et al.
  • Communications biology‎
  • 2024‎

Endothelial cells express neuropilin 1 (NRP1), endoglin (ENG) and vascular endothelial growth factor receptor 2 (VEGFR2), which regulate VEGF-A-mediated vascular development and angiogenesis. However, the link between complex formation among these receptors with VEGF-A-induced signaling and biology is yet unclear. Here, we quantify surface receptor interactions by IgG-mediated immobilization of one receptor, and fluorescence recovery after photobleaching (FRAP) measurements of the mobility of another coexpressed receptor. We observe stable ENG/NRP1, ENG/VEGFR2, and NRP1/VEGFR2 complexes, which are enhanced by VEGF-A. ENG augments NRP1/VEGFR2 interactions, suggesting formation of tripartite complexes bridged by ENG. Effects on signaling are measured in murine embryonic endothelial cells expressing (MEEC+/+) or lacking (MEEC-/-) ENG, along with NRP1 and/or ENG overexpression or knockdown. We find that optimal VEGF-A-mediated phosphorylation of VEGFR2 and Erk1/2 requires ENG and NRP1. ENG or NRP1 increase VEGF-A-induced sprouting, becoming optimal in cells expressing all three receptors, and both processes are inhibited by a MEK1/2 inhibitor. We propose a model where the maximal potency of VEGF-A involves a tripartite complex where ENG bridges VEGFR2 and NRP1, providing an attractive therapeutic target for modulation of VEGF-A signaling and biological responses.


Endoglin regulates PI3-kinase/Akt trafficking and signaling to alter endothelial capillary stability during angiogenesis.

  • Nam Y Lee‎ et al.
  • Molecular biology of the cell‎
  • 2012‎

Endoglin (CD105) is an endothelial-specific transforming growth factor β (TGF-β) coreceptor essential for angiogenesis and vascular homeostasis. Although endoglin dysfunction contributes to numerous vascular conditions, the mechanism of endoglin action remains poorly understood. Here we report a novel mechanism in which endoglin and Gα-interacting protein C-terminus-interacting protein (GIPC)-mediated trafficking of phosphatidylinositol 3-kinase (PI3K) regulates endothelial signaling and function. We demonstrate that endoglin interacts with the PI3K subunits p110α and p85 via GIPC to recruit and activate PI3K and Akt at the cell membrane. Opposing ligand-induced effects are observed in which TGF-β1 attenuates, whereas bone morphogenetic protein-9 enhances, endoglin/GIPC-mediated membrane scaffolding of PI3K and Akt to alter endothelial capillary tube stability in vitro. Moreover, we employ the first transgenic zebrafish model for endoglin to demonstrate that GIPC is a critical component of endoglin function during developmental angiogenesis in vivo. These studies define a novel non-Smad function for endoglin and GIPC in regulating endothelial cell function during angiogenesis.


Modulation of circulating protein biomarkers following TRC105 (anti-endoglin antibody) treatment in patients with advanced cancer.

  • Yingmiao Liu‎ et al.
  • Cancer medicine‎
  • 2014‎

TRC105 is an endoglin-targeting drug that possesses anti-angiogenic and antitumor potential. Analysis of the initial phase I trial of TRC105 demonstrated good tolerability and efficacy in cancer patients. In this report, we analyzed multiple circulating biomarkers at baseline, cycle 2 day 1 (C2D1), and end of study (EOS) for each patient. The baseline level and the fold change from baseline to both C2D1 and EOS for each marker were statistically analyzed. At C2D1, seven markers were significantly downregulated (angiopoietin-2 [Ang-2], insulin-like growth factor-binding protein-3 [IGFBP-3], plasminogen activator inhibitor-1 [PAI-1] total, platelet-derived growth factor [PDGF]-AA, PDGF-BB, thrombospondin-1 [TSP-1], and vascular endothelial growth factor [VEGF]-D). Meanwhile, seven markers were upregulated by C2D1 (E-Cadherin, soluble Endoglin [sEnd], E-Selectin, interleukin-6 [IL-6], osteopontin [OPN], TSP-2, and von Willebrand factor [vWF]). At EOS, seven markers were upregulated including Ang-2, C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), IGFBP-1, IL-6, TSP-2, and vascular cell adhesion molecule-1 (VCAM-1). A statistical trend was also seen for increases of VEGF-A and placenta growth factor (PlGF) at EOS. Throughout treatment, sEnd levels significantly increased, an observation that was recapitulated in cultured endothelial cells. This is the first report of plasma-based biomarkers in patients receiving TRC105. TRC105 treatment by C2D1 was associated with decreases in several angiogenic factors, including Ang-2, PDGF isoforms, and VEGF isoforms, offering insight into the mechanisms underlying TRC105's anti-angiogenic, antitumor function. Increases in sEnd were the most significant of all observed biomarker changes and may reflect direct drug effects. Additionally, biomarker changes in response to TRC105 are distinct from those seen in patients treated with VEGF-targeting drugs, suggesting the possible utility of combining these two classes of angiogenesis inhibitors in patients.


A bioinformatic analysis of the inhibin-betaglycan-endoglin/CD105 network reveals prognostic value in multiple solid tumors.

  • Eduardo Listik‎ et al.
  • PloS one‎
  • 2021‎

Inhibins and activins are dimeric ligands belonging to the TGFβ superfamily with emergent roles in cancer. Inhibins contain an α-subunit (INHA) and a β-subunit (either INHBA or INHBB), while activins are mainly homodimers of either βA (INHBA) or βB (INHBB) subunits. Inhibins are biomarkers in a subset of cancers and utilize the coreceptors betaglycan (TGFBR3) and endoglin (ENG) for physiological or pathological outcomes. Given the array of prior reports on inhibin, activin and the coreceptors in cancer, this study aims to provide a comprehensive analysis, assessing their functional prognostic potential in cancer using a bioinformatics approach. We identify cancer cell lines and cancer types most dependent and impacted, which included p53 mutated breast and ovarian cancers and lung adenocarcinomas. Moreover, INHA itself was dependent on TGFBR3 and ENG/CD105 in multiple cancer types. INHA, INHBA, TGFBR3, and ENG also predicted patients' response to anthracycline and taxane therapy in luminal A breast cancers. We also obtained a gene signature model that could accurately classify 96.7% of the cases based on outcomes. Lastly, we cross-compared gene correlations revealing INHA dependency to TGFBR3 or ENG influencing different pathways themselves. These results suggest that inhibins are particularly important in a subset of cancers depending on the coreceptor TGFBR3 and ENG and are of substantial prognostic value, thereby warranting further investigation.


Effects of the combination of TRC105 and bevacizumab on endothelial cell biology.

  • Yingmiao Liu‎ et al.
  • Investigational new drugs‎
  • 2014‎

Endoglin, or CD105, is a cell membrane glycoprotein that is overexpressed on proliferating endothelial cells (EC), including those found in malignancies and choroidal neovascularization. Endoglin mediates the transition from quiescent endothelium, characterized by the relatively dominant state of Smad 2/3 phosphorylation, to active angiogenesis by preferentially phosphorylating Smad 1/5/8. The monoclonal antibody TRC105 binds endoglin with high avidity and is currently being tested in phase 1b and phase 2 clinical trials. In this report, we evaluated the effects of TRC105 on primary human umbilical vascular endothelial cells (HUVEC) as a single agent and in combination with bevacizumab. As single agents, both TRC105 and bevacizumab efficiently blocked HUVEC tube formation, and the combination of both agents achieved even greater levels of inhibition. We further assessed the effects of each drug on various aspects of HUVEC function. While bevacizumab was observed to inhibit HUVEC viability in nutrient-limited medium, TRC105 had little effect on HUVEC viability, either alone or in combination with bevacizumab. Additionally, both drugs inhibited HUVEC migration and induced apoptosis. At the molecular level, TRC105 treatment of HUVEC lead to decreased Smad 1/5/8 phosphorylation in response to BMP-9, a primary ligand for endoglin. Together, these results indicate that TRC105 acts as an effective anti-angiogenic agent alone and in combination with bevacizumab.


EPDR1 is a noncanonical effector of insulin-mediated angiogenesis regulated by an endothelial-specific TGF-β receptor complex.

  • Tasmia Ahmed‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Insulin signaling in blood vessels primarily functions to stimulate angiogenesis and maintain vascular homeostasis through the canonical PI3K and MAPK signaling pathways. However, angiogenesis is a complex process coordinated by multiple other signaling events. Here, we report a distinct crosstalk between the insulin receptor and endoglin/activin receptor-like kinase 1 (ALK1), an endothelial cell-specific TGF-β receptor complex essential for angiogenesis. While the endoglin-ALK1 complex normally binds to TGF-β or bone morphogenetic protein 9 (BMP9) to promote gene regulation via transcription factors Smad1/5, we show that insulin drives insulin receptor oligomerization with endoglin-ALK1 at the cell surface to trigger rapid Smad1/5 activation. Through quantitative proteomic analysis, we identify ependymin-related protein 1 (EPDR1) as a major Smad1/5 gene target induced by insulin but not by TGF-β or BMP9. We found endothelial EPDR1 expression is minimal at the basal state but is markedly enhanced upon prolonged insulin treatment to promote cell migration and formation of capillary tubules. Conversely, we demonstrate EPDR1 depletion strongly abrogates these angiogenic effects, indicating that EPDR1 is a crucial mediator of insulin-induced angiogenesis. Taken together, these results suggest important therapeutic implications for EPDR1 and the TGF-β pathways in pathologic angiogenesis during hyperinsulinemia and insulin resistance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: