Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections.

  • Mathieu Barbier‎ et al.
  • American journal of human genetics‎
  • 2014‎

Thoracic aortic aneurysm and dissection (TAAD) is an autosomal-dominant disorder with major life-threatening complications. The disease displays great genetic heterogeneity with some forms allelic to Marfan and Loeys-Dietz syndrome, and an important number of cases still remain unexplained at the molecular level. Through whole-exome sequencing of affected members in a large TAAD-affected family, we identified the c.472C>T (p.Arg158(∗)) nonsense mutation in MFAP5 encoding the extracellular matrix component MAGP-2. This protein interacts with elastin fibers and the microfibrillar network. Mutation screening of 403 additional probands identified an additional missense mutation of MFAP5 (c.62G>T [p.Trp21Leu]) segregating with the disease in a second family. Functional analyses performed on both affected individual's cells and in vitro models showed that these two mutations caused pure or partial haploinsufficiency. Thus, alteration of MAGP-2, a component of microfibrils and elastic fibers, appears as an initiating mechanism of inherited TAAD.


Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis.

  • Yannick Allanore‎ et al.
  • PLoS genetics‎
  • 2011‎

Systemic sclerosis (SSc) is an orphan, complex, inflammatory disease affecting the immune system and connective tissue. SSc stands out as a severely incapacitating and life-threatening inflammatory rheumatic disease, with a largely unknown pathogenesis. We have designed a two-stage genome-wide association study of SSc using case-control samples from France, Italy, Germany, and Northern Europe. The initial genome-wide scan was conducted in a French post quality-control sample of 564 cases and 1,776 controls, using almost 500 K SNPs. Two SNPs from the MHC region, together with the 6 loci outside MHC having at least one SNP with a P<10(-5) were selected for follow-up analysis. These markers were genotyped in a post-QC replication sample of 1,682 SSc cases and 3,926 controls. The three top SNPs are in strong linkage disequilibrium and located on 6p21, in the HLA-DQB1 gene: rs9275224, P = 9.18×10(-8), OR = 0.69, 95% CI [0.60-0.79]; rs6457617, P = 1.14×10(-7) and rs9275245, P = 1.39×10(-7). Within the MHC region, the next most associated SNP (rs3130573, P = 1.86×10(-5), OR = 1.36 [1.18-1.56]) is located in the PSORS1C1 gene. Outside the MHC region, our GWAS analysis revealed 7 top SNPs (P<10(-5)) that spanned 6 independent genomic regions. Follow-up of the 17 top SNPs in an independent sample of 1,682 SSc and 3,926 controls showed associations at PSORS1C1 (overall P = 5.70×10(-10), OR:1.25), TNIP1 (P = 4.68×10(-9), OR:1.31), and RHOB loci (P = 3.17×10(-6), OR:1.21). Because of its biological relevance, and previous reports of genetic association at this locus with connective tissue disorders, we investigated TNIP1 expression. A markedly reduced expression of the TNIP1 gene and also its protein product were observed both in lesional skin tissue and in cultured dermal fibroblasts from SSc patients. Furthermore, TNIP1 showed in vitro inhibitory effects on inflammatory cytokine-induced collagen production. The genetic signal of association with TNIP1 variants, together with tissular and cellular investigations, suggests that this pathway has a critical role in regulating autoimmunity and SSc pathogenesis.


Whole Exome/Genome Sequencing Joint Analysis of a Family with Oligogenic Familial Hypercholesterolemia.

  • Youmna Ghaleb‎ et al.
  • Metabolites‎
  • 2022‎

Autosomal Dominant Hypercholesterolemia (ADH) is a genetic disorder caused by pathogenic variants in LDLR, APOB, PCSK9 and APOE genes. We sought to identify new candidate genes responsible for the ADH phenotype in patients without pathogenic variants in the known ADH-causing genes by focusing on a French family with affected and non-affected members who presented a high ADH polygenic risk score (wPRS). Linkage analysis, whole exome and whole genome sequencing resulted in the identification of variants p.(Pro398Ala) in CYP7A1, p.(Val1382Phe) in LRP6 and p.(Ser202His) in LDLRAP1. A total of 6 other variants were identified in 6 of 160 unrelated ADH probands: p.(Ala13Val) and p.(Aps347Asn) in CYP7A1; p.(Tyr972Cys), p.(Thr1479Ile) and p.(Ser1612Phe) in LRP6; and p.(Ser202LeufsTer19) in LDLRAP1. All six probands presented a moderate wPRS. Serum analyses of carriers of the p.(Pro398Ala) variant in CYP7A1 showed no differences in the synthesis of bile acids compared to the serums of non-carriers. Functional studies of the four LRP6 mutants in HEK293T cells resulted in contradictory results excluding a major effect of each variant alone. Within the family, none of the heterozygous for only the LDLRAP1 p.(Ser202His) variant presented ADH. Altogether, each variant individually does not result in elevated LDL-C; however, the oligogenic combination of two or three variants reveals the ADH phenotype.


A Risk Score to Detect Subclinical Rheumatoid Arthritis-Associated Interstitial Lung Disease.

  • Pierre-Antoine Juge‎ et al.
  • Arthritis & rheumatology (Hoboken, N.J.)‎
  • 2022‎

Patients at high risk of rheumatoid arthritis-associated interstitial lung disease (RA-ILD) would benefit from being identified before the onset of respiratory symptoms; this can be done by screening patients with the use of chest high-resolution computed tomography (HRCT). Our objective was to develop and validate a risk score for patients who have subclinical RA-ILD.


Clinical relevance of genotype-phenotype correlations beyond vascular events in a cohort study of 1500 Marfan syndrome patients with FBN1 pathogenic variants.

  • Pauline Arnaud‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2021‎

Marfan syndrome (MFS) is a connective tissue disorder in which several systems are affected with great phenotypic variability. Although known to be associated with pathogenic variants in the FBN1 gene, few genotype-phenotype correlations have been found in proband studies only.


Angiotensin receptor blockers and β blockers in Marfan syndrome: an individual patient data meta-analysis of randomised trials.

  • Alex Pitcher‎ et al.
  • Lancet (London, England)‎
  • 2022‎

Angiotensin receptor blockers (ARBs) and β blockers are widely used in the treatment of Marfan syndrome to try to reduce the rate of progressive aortic root enlargement characteristic of this condition, but their separate and joint effects are uncertain. We aimed to determine these effects in a collaborative individual patient data meta-analysis of randomised trials of these treatments.


Enhanced late-outgrowth circulating endothelial progenitor cell levels in rheumatoid arthritis and correlation with disease activity.

  • Vanina Jodon de Villeroché‎ et al.
  • Arthritis research & therapy‎
  • 2010‎

Angiogenesis and vasculogenesis are critical in rheumatoid arthritis (RA) as they could be a key issue for chronic synovitis. Contradictory results have been published regarding circulating endothelial progenitor cells (EPCs) in RA. We herein investigated late outgrowth EPC sub-population using recent recommendations in patients with RA and healthy controls.


MAT2A mutations predispose individuals to thoracic aortic aneurysms.

  • Dong-chuan Guo‎ et al.
  • American journal of human genetics‎
  • 2015‎

Up to 20% of individuals who have thoracic aortic aneurysms or acute aortic dissections but who do not have syndromic features have a family history of thoracic aortic disease. Significant genetic heterogeneity is established for this familial condition. Whole-genome linkage analysis and exome sequencing of distant relatives from a large family with autosomal-dominant inheritance of thoracic aortic aneurysms variably associated with the bicuspid aortic valve was used for identification of additional genes predisposing individuals to this condition. A rare variant, c.1031A>C (p.Glu344Ala), was identified in MAT2A, which encodes methionine adenosyltransferase II alpha (MAT IIα). This variant segregated with disease in the family, and Sanger sequencing of DNA from affected probands from unrelated families with thoracic aortic disease identified another MAT2A rare variant, c.1067G>A (p.Arg356His). Evidence that these variants predispose individuals to thoracic aortic aneurysms and dissections includes the following: there is a paucity of rare variants in MAT2A in the population; amino acids Glu344 and Arg356 are conserved from humans to zebrafish; and substitutions of these amino acids in MAT Iα are found in individuals with hypermethioninemia. Structural analysis suggested that p.Glu344Ala and p.Arg356His disrupt MAT IIα enzyme function. Knockdown of mat2aa in zebrafish via morpholino oligomers disrupted cardiovascular development. Co-transfected wild-type human MAT2A mRNA rescued defects of zebrafish cardiovascular development at significantly higher levels than mRNA edited to express either the Glu344 or Arg356 mutants, providing further evidence that the p.Glu344Ala and p.Arg356His substitutions impair MAT IIα function. The data presented here support the conclusion that rare genetic variants in MAT2A predispose individuals to thoracic aortic disease.


Characterization of Autosomal Dominant Hypercholesterolemia Caused by PCSK9 Gain of Function Mutations and Its Specific Treatment With Alirocumab, a PCSK9 Monoclonal Antibody.

  • Paul N Hopkins‎ et al.
  • Circulation. Cardiovascular genetics‎
  • 2015‎

Patients with PCSK9 gene gain of function (GOF) mutations have a rare form of autosomal dominant hypercholesterolemia. However, data examining their clinical characteristics and geographic distribution are lacking. Furthermore, no randomized treatment study in this population has been reported.


Rationale, design, and methods for Canadian alliance for healthy hearts and minds cohort study (CAHHM) - a Pan Canadian cohort study.

  • Sonia S Anand‎ et al.
  • BMC public health‎
  • 2016‎

The Canadian Alliance for Healthy Hearts and Minds (CAHHM) is a pan-Canadian, prospective, multi-ethnic cohort study being conducted in Canada. The overarching objective of the CAHHM is to understand the association of socio-environmental and contextual factors (such as societal structure, activity, nutrition, social and tobacco environments, and access to health services) with cardiovascular risk factors, subclinical vascular disease, and cardiovascular and other chronic disease outcomes.


MYLK pathogenic variants aortic disease presentation, pregnancy risk, and characterization of pathogenic missense variants.

  • Stephanie E Wallace‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2019‎

Heritable thoracic aortic disease can result from null variants in MYLK, which encodes myosin light-chain kinase (MLCK). Data on which MYLK missense variants are pathogenic and information to guide aortic disease management are limited.


Molecular analysis and intestinal expression of SAR1 genes and proteins in Anderson's disease (Chylomicron retention disease).

  • Amandine Georges‎ et al.
  • Orphanet journal of rare diseases‎
  • 2011‎

Anderson's disease (AD) or chylomicron retention disease (CMRD) is a very rare hereditary lipid malabsorption syndrome. In order to discover novel mutations in the SAR1B gene and to evaluate the expression, as compared to healthy subjects, of the Sar1 gene and protein paralogues in the intestine, we investigated three previously undescribed individuals with the disease.


Marfan Syndrome Variability: Investigation of the Roles of Sarcolipin and Calcium as Potential Transregulator of FBN1 Expression.

  • Louise Benarroch‎ et al.
  • Genes‎
  • 2018‎

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder that displays a great clinical variability. Previous work in our laboratory showed that fibrillin-1 (FBN1) messenger RNA (mRNA) expression is a surrogate endpoint for MFS severity. Therefore, an expression quantitative trait loci (eQTL) analysis was performed to identify trans-acting regulators of FBN1 expression, and a significant signal reached genome-wide significant threshold on chromosome 11. This signal delineated a region comprising one expressed gene, SLN (encoding sarcolipin), and a single pseudogene, SNX7-ps1 (CTD-2651C21.3). We first investigated the region and then looked for association between the genes in the region and FBN1 expression. For the first time, we showed that the SLN gene is weakly expressed in skin fibroblasts. There is no direct correlation between SLN and FBN1 gene expression. We showed that calcium influx modulates FBN1 gene expression. Finally, SLN gene expression is highly correlated to that of the neighboring SNX7-ps1. We were able to confirm the impact of calcium influx on FBN1 gene expression but we could not conclude regarding the role of sarcolipin and/or the eQTL locus in this regulation.


Mutations in the TGFβ binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias.

  • Carine Le Goff‎ et al.
  • American journal of human genetics‎
  • 2011‎

Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFβ-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFβ signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFβ signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.


Core-Shell Polymer-Based Nanoparticles Deliver miR-155-5p to Endothelial Cells.

  • Joana C Antunes‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2019‎

Heart failure occurs in over 30% of the worldwide population and most commonly originates from cardiovascular diseases such as myocardial infarction. microRNAs (miRNAs) target and silence specific mRNAs, thereby regulating gene expression. Because the endogenous miR-155-5p has been ascribed to vasculoprotection, loading it onto positively charged, core-shell poly(isobutylcyanoacrylate) (PIBCA)-polysaccharide nanoparticles (NPs) was attempted. NPs showed a decrease (p < 0.0001) in surface electrical charge (ζ potential), with negligible changes in size or shape when loaded with the anionic miR-155-5p. Presence of miR-155-5p in loaded NPs was further quantified. Cytocompatibility up to 100 μg/mL of NPs for 2 days with human coronary artery endothelial cells (hCAECs) was documented. NPs were able to enter hCAECs and were localized in the endoplasmic reticulum (ER). Expression of miR-155-5p was increased within the cells by 75-fold after 4 hours of incubation (p < 0.05) and was still noticeable at day 2. Differences between loaded NP-cultured cells and free miRNA, at days 1 (p < 0.05) and 2 (p < 0.001) suggest the ability of prolonged load release in physiological conditions. Expression of miR-155-5p downstream target BACH1 was decreased in the cells by 4-fold after 1 day of incubation (p < 0.05). This study is a first proof of concept that miR-155-5p can be loaded onto NPs and remain intact and biologically active in endothelial cells (ECs). These nanosystems could potentially increase an endogenous cytoprotective response and decrease damage within infarcted hearts.


Identification of a Variant in APOB Gene as a Major Cause of Hypobetalipoproteinemia in Lebanese Families.

  • Carine Ayoub‎ et al.
  • Metabolites‎
  • 2021‎

Familial hypobetalipoproteinemia (FHBL) is a codominant genetic disorder characterized by reduced plasma levels of low-density lipoprotein cholesterol and apolipoprotein B. To our knowledge, no study on FHBL in Lebanon and the Middle East region has been reported. Therefore, we conducted genetic studies in unrelated families and probands of Lebanese origin presenting with FHBL, in order to identify the causes of this disease. We found that 71% of the recruited probands and their affected relatives were heterozygous for the p.(Arg490Trp) variant in the APOB gene. Haplotype analysis showed that these patients presented the same mutant haplotype. Moreover, there was a decrease in plasma levels of PCSK9 in affected individuals compared to the non-affected and a significant positive correlation between circulating PCSK9 and ApoB levels in all studied probands and their family members. Some of the p.(Arg490Trp) carriers suffered from diabetes, hepatic steatosis or neurological problems. In conclusion, the p.(Arg490Trp) pathogenic variant seems a cause of FHBL in patients from Lebanese origin, accounting for approximately 70% of the probands with FHBL presumably as a result of a founder mutation in Lebanon. This study is crucial to guide the early diagnosis, management and prevention of the associated complications of this disease.


Clinical and genetic data of 22 new patients with SMAD3 pathogenic variants and review of the literature.

  • Bertrand Chesneau‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2020‎

Pathogenic SMAD3 variants are responsible for a cardiovascular phenotype, mainly thoracic aortic aneurysms and dissections. Precocious identification of the vascular risk such as aortic dilatation in mutated patients has a major impact in terms of management, particularly to avoid dissection and sudden death. These vascular damages are classically associated with premature osteoarthritis and skeletal abnormalities. However, variable expressivity and incomplete penetrance are common with SMAD3 variants.


Green space associations with mental health and cognitive function: Results from the Quebec CARTaGENE cohort.

  • Perry Hystad‎ et al.
  • Environmental epidemiology (Philadelphia, Pa.)‎
  • 2019‎

Urban green space may be important to mental health, but the association between long-term green space exposures and depression, anxiety, and cognitive function in adults remains unknown.


In-frame mutations in exon 1 of SKI cause dominant Shprintzen-Goldberg syndrome.

  • Virginie Carmignac‎ et al.
  • American journal of human genetics‎
  • 2012‎

Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism. All mutations were located in a restricted area of exon 1, within the R-SMAD binding domain of SKI. No mutation was found in a cohort of 11 individuals with other marfanoid-craniosynostosis phenotypes. The interaction between SKI and Smad2/3 and Smad 4 regulates TGF-β signaling, and the pattern of anomalies in Ski-deficient mice corresponds to the clinical manifestations of SGS. These findings define SGS as a member of the family of diseases associated with the TGF-β-signaling pathway.


Early-onset osteoarthritis, Charcot-Marie-Tooth like neuropathy, autoimmune features, multiple arterial aneurysms and dissections: an unrecognized and life threatening condition.

  • Mélodie Aubart‎ et al.
  • PloS one‎
  • 2014‎

Severe osteoarthritis and thoracic aortic aneurysms have recently been associated with mutations in the SMAD3 gene, but the full clinical spectrum is incompletely defined.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: