Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections.

  • Mathieu Barbier‎ et al.
  • American journal of human genetics‎
  • 2014‎

Thoracic aortic aneurysm and dissection (TAAD) is an autosomal-dominant disorder with major life-threatening complications. The disease displays great genetic heterogeneity with some forms allelic to Marfan and Loeys-Dietz syndrome, and an important number of cases still remain unexplained at the molecular level. Through whole-exome sequencing of affected members in a large TAAD-affected family, we identified the c.472C>T (p.Arg158(∗)) nonsense mutation in MFAP5 encoding the extracellular matrix component MAGP-2. This protein interacts with elastin fibers and the microfibrillar network. Mutation screening of 403 additional probands identified an additional missense mutation of MFAP5 (c.62G>T [p.Trp21Leu]) segregating with the disease in a second family. Functional analyses performed on both affected individual's cells and in vitro models showed that these two mutations caused pure or partial haploinsufficiency. Thus, alteration of MAGP-2, a component of microfibrils and elastic fibers, appears as an initiating mechanism of inherited TAAD.


MAT2A mutations predispose individuals to thoracic aortic aneurysms.

  • Dong-chuan Guo‎ et al.
  • American journal of human genetics‎
  • 2015‎

Up to 20% of individuals who have thoracic aortic aneurysms or acute aortic dissections but who do not have syndromic features have a family history of thoracic aortic disease. Significant genetic heterogeneity is established for this familial condition. Whole-genome linkage analysis and exome sequencing of distant relatives from a large family with autosomal-dominant inheritance of thoracic aortic aneurysms variably associated with the bicuspid aortic valve was used for identification of additional genes predisposing individuals to this condition. A rare variant, c.1031A>C (p.Glu344Ala), was identified in MAT2A, which encodes methionine adenosyltransferase II alpha (MAT IIα). This variant segregated with disease in the family, and Sanger sequencing of DNA from affected probands from unrelated families with thoracic aortic disease identified another MAT2A rare variant, c.1067G>A (p.Arg356His). Evidence that these variants predispose individuals to thoracic aortic aneurysms and dissections includes the following: there is a paucity of rare variants in MAT2A in the population; amino acids Glu344 and Arg356 are conserved from humans to zebrafish; and substitutions of these amino acids in MAT Iα are found in individuals with hypermethioninemia. Structural analysis suggested that p.Glu344Ala and p.Arg356His disrupt MAT IIα enzyme function. Knockdown of mat2aa in zebrafish via morpholino oligomers disrupted cardiovascular development. Co-transfected wild-type human MAT2A mRNA rescued defects of zebrafish cardiovascular development at significantly higher levels than mRNA edited to express either the Glu344 or Arg356 mutants, providing further evidence that the p.Glu344Ala and p.Arg356His substitutions impair MAT IIα function. The data presented here support the conclusion that rare genetic variants in MAT2A predispose individuals to thoracic aortic disease.


Mutations in the TGFβ binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias.

  • Carine Le Goff‎ et al.
  • American journal of human genetics‎
  • 2011‎

Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFβ-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFβ signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFβ signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.


In-frame mutations in exon 1 of SKI cause dominant Shprintzen-Goldberg syndrome.

  • Virginie Carmignac‎ et al.
  • American journal of human genetics‎
  • 2012‎

Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism. All mutations were located in a restricted area of exon 1, within the R-SMAD binding domain of SKI. No mutation was found in a cohort of 11 individuals with other marfanoid-craniosynostosis phenotypes. The interaction between SKI and Smad2/3 and Smad 4 regulates TGF-β signaling, and the pattern of anomalies in Ski-deficient mice corresponds to the clinical manifestations of SGS. These findings define SGS as a member of the family of diseases associated with the TGF-β-signaling pathway.


Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections.

  • Dong-chuan Guo‎ et al.
  • American journal of human genetics‎
  • 2013‎

Gene mutations that lead to decreased contraction of vascular smooth-muscle cells (SMCs) can cause inherited thoracic aortic aneurysms and dissections. Exome sequencing of distant relatives affected by thoracic aortic disease and subsequent Sanger sequencing of additional probands with familial thoracic aortic disease identified the same rare variant, PRKG1 c.530G>A (p.Arg177Gln), in four families. This mutation segregated with aortic disease in these families with a combined two-point LOD score of 7.88. The majority of affected individuals presented with acute aortic dissections (63%) at relatively young ages (mean 31 years, range 17-51 years). PRKG1 encodes type I cGMP-dependent protein kinase (PKG-1), which is activated upon binding of cGMP and controls SMC relaxation. Although the p.Arg177Gln alteration disrupts binding to the high-affinity cGMP binding site within the regulatory domain, the altered PKG-1 is constitutively active even in the absence of cGMP. The increased PKG-1 activity leads to decreased phosphorylation of the myosin regulatory light chain in fibroblasts and is predicted to cause decreased contraction of vascular SMCs. Thus, identification of a gain-of-function mutation in PRKG1 as a cause of thoracic aortic disease provides further evidence that proper SMC contractile function is critical for maintaining the integrity of the thoracic aorta throughout a lifetime.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: