Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

Fractal analysis of the structural complexity of the connective tissue in human carotid bodies.

  • Diego Guidolin‎ et al.
  • Frontiers in physiology‎
  • 2014‎

The carotid body (CB) may undergo different structural changes during perinatal development, aging, or in response to environmental stimuli. In the previous literature, morphometric approaches to evaluate these changes have considered quantitative first order parameters, such as volumes or densities, while changes in spatial disposition and/or complexity of structural components have not yet been considered. In the present study, different strategies for addressing morphological complexity of CB, apart from the overall amount of each tissue component, were evaluated and compared. In particular, we considered the spatial distribution of connective tissue in the carotid bodies of young control subjects, young opiate-related deaths and aged subjects, through analysis of dispersion (Morisita's index), gray level co-occurrence matrix (entropy, angular second moment, variance, correlation), and fractal analysis (fractal dimension, lacunarity). Opiate-related deaths and aged subjects showed a comparable increase in connective tissue with respect to young controls. However, the Morisita's index (p < 0.05), angular second moment (p < 0.05), fractal dimension (p < 0.01), and lacunarity (p < 0.01) permitted to identify significant differences in the disposition of the connective tissue between these two series. A receiver operating characteristic (ROC) curve was also calculated to evaluate the efficiency of each parameter. The fractal dimension and lacunarity, with areas under the ROC curve of 0.9651 (excellent accuracy) and 0.8835 (good accuracy), respectively, showed the highest discriminatory power. They evidenced higher level of structural complexity in the carotid bodies of opiate-related deaths than old controls, due to more complex branching of intralobular connective tissue. Further analyses will have to consider the suitability of these approaches to address other morphological features of the CB, such as different cell populations, vascularization, and innervation.


Dermal papillae flattening of thigh skin in Conus Cauda Syndrome.

  • Barbara Ravara‎ et al.
  • European journal of translational myology‎
  • 2018‎

Our previous studies have shown that severely atrophic Quadriceps muscles of spinal cord injury (SCI) persons suffering with complete conus and cauda equina syndrome, and thus with permanent denervation-induced atrophy and degeneration of muscle, were almost completely rescued to normal size after two years of home based Functional Electrical Stimulation (hbFES). Since large surface electrodes were used to stimulate the denervated thigh muscles, we wanted to know if the skin was affected by this peculiar long-term treatment. Indeed, we demonstrated by two approaches that the epidermis decreases in thickness in the long term denervated persons, while it increased to almost pre-SCI values in hbFES compliant SCI persons. Here we report data of morphometry of skin biopsies from both legs of 18 SCI persons, harvested at enrolment in the Project RISE, to test if the Interdigitation Index, a simple measurement of the epidermal-dermal junction, may provide a further precise quantitative evidence of the flattening of the skin in those SCI persons. The Interdigitation Index of the 36 skin biopsies shows a higly significant linear correlation with the years of SCI (p < 0.001). Furthermore, when the 18 SCI persons are divided in two groups (1 to 3.9 versus 4.1 to 8.0 years from SCI, respectively) and the data are compared, the later Group presents a statistically significant -22% decrease (p, 0.029) of the Interdigitation Index. On the other hand counting the papille do not provide the same strong evidence. In conclusion, the Interdigitation Index is an additional sound quantitative structural biomarker of skin atrophy and flattening occurring in SCI. The result correlates with the much severe extent of atrophy of the permanently denervated thigh muscles, as determined at both macro and microscopic levels.We are confident that the Interdigitation Index will provide sound evidence that the effects of hbFES, we previously reported on skeletal muscle and epidermis thickness, will be extended to the dermal layer of the skin, suggesting a coordinated negative effects of SCI on skeletal muscle and skin, and an improvement of both tissues after hbFES. Incoming analyses will be extended to basal lamina, collagene types, elastic fibers and skin annexes in the subcutaneous layer.


Transient Inhibition of FGFR2b-ligands signaling leads to irreversible loss of cellular β-catenin organization and signaling in AER during mouse limb development.

  • Soula Danopoulos‎ et al.
  • PloS one‎
  • 2013‎

The vertebrate limbs develop through coordinated series of inductive, growth and patterning events. Fibroblast Growth Factor receptor 2b (FGFR2b) signaling controls the induction of the Apical Ectodermal Ridge (AER) but its putative roles in limb outgrowth and patterning, as well as in AER morphology and cell behavior have remained unclear. We have investigated these roles through graded and reversible expression of soluble dominant-negative FGFR2b molecules at various times during mouse limb development, using a doxycycline/transactivator/tet(O)-responsive system. Transient attenuation (≤ 24 hours) of FGFR2b-ligands signaling at E8.5, prior to limb bud induction, leads mostly to the loss or truncation of proximal skeletal elements with less severe impact on distal elements. Attenuation from E9.5 onwards, however, has an irreversible effect on the stability of the AER, resulting in a progressive loss of distal limb skeletal elements. The primary consequences of FGFR2b-ligands attenuation is a transient loss of cell adhesion and down-regulation of P63, β1-integrin and E-cadherin, and a permanent loss of cellular β-catenin organization and WNT signaling within the AER. Combined, these effects lead to the progressive transformation of the AER cells from pluristratified to squamous epithelial-like cells within 24 hours of doxycycline administration. These findings show that FGFR2b-ligands signaling has critical stage-specific roles in maintaining the AER during limb development.


Urotensin II Exerts Pressor Effects By Stimulating Renin And Aldosterone Synthase Gene Expression.

  • Brasilina Caroccia‎ et al.
  • Scientific reports‎
  • 2017‎

We investigated the in vivo pressor effects of the potent vasoconstrictor Urotensin II (UII). We randomized normotensive Sprague-Dawley rats into 4 groups that received a 7-day UII infusion (cases) or vehicle (controls). Group 1 received normal sodium intake; Group 2 underwent unilateral nephrectomy and salt loading; Group 3 received spironolactone, besides unilateral nephrectomy and salt loading; Group 4 only received spironolactone. UII raised BP transiently after a lag phase of 12-36 hours in Group 1, and progressively over the week in Group 2. Spironolactone did not affect blood pressure, but abolished both pressor effects of UII in Group 3, and left blood pressure unaffected in Group 4. UII increased by 7-fold the renal expression of renin in Group 2, increased aldosterone synthase expression in the adrenocortical zona glomerulosa, and prevented the blunting of renin expression induced by high salt. UII raises BP transiently when sodium intake and renal function are normal, but progressively in salt-loaded uninephrectomized rats. Moreover, it increases aldosterone synthase and counteracts the suppression of renin induced by salt loading. This novel action of UII in the regulation of renin and aldosterone synthesis could play a role in several clinical conditions where UII levels are up-regulated.


Increased Cardiovascular Risk Associated with Chemical Sensitivity to Perfluoro-Octanoic Acid: Role of Impaired Platelet Aggregation.

  • Luca De Toni‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Perfluoro-alkyl substances (PFAS), particularly perfluoro-octanoic acid (PFOA), are persisting environmental chemicals showing bioaccumulation in human tissues. Recently, exposure to PFAS has been associated with increased prevalence of cardiovascular diseases (CVDs). However, a causal role of PFAS in atherosclerosis pathogenesis is under-investigated. Here, we investigated the effect of PFOA exposure on platelets' function, a key player in atherosclerosis process. PFOA accumulation in platelets was evaluated by liquid chromatography-mass spectrometry. Changes in platelets' membrane fluidity and activation after dose-dependent exposure to PFOA were evaluated by merocyanine 540 (MC540) and anti P-Selectin immune staining at flow cytometry, respectively. Intracellular calcium trafficking was analyzed with Fluo4M probe, time-lapse live imaging. Platelets' aggregation state was also evaluated with Multiplate® aggregometry analyzer in 48 male subjects living in a specific area of the Veneto region with high PFAS environmental pollution, and compared with 30 low-exposure control subjects. Platelets' membrane was the major target of PFOA, whose dose-dependent accumulation was associated in turn with increased membrane fluidity, as expected by a computational model; increased activation at resting condition; and both calcium uptake and aggregation upon activation. Finally, exposed subjects had higher serum and platelets levels of PFOA, together with increased aggregation parameters at Multiplate®, compared with controls. These data help to explain the emerging association between PFAS exposure and CVD.


The Effects of Aging on the Intramuscular Connective Tissue.

  • Caterina Fede‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The intramuscular connective tissue plays a critical role in maintaining the structural integrity of the muscle and in providing mechanical support. The current study investigates age-related changes that may contribute to passive stiffness and functional impairment of skeletal muscles. Variations in the extracellular matrix in human quadriceps femoris muscles in 10 young men, 12 elderly males and 16 elderly females, and in the hindlimb muscles of 6 week old, 8 month old and 2 year old C57BL/6J male mice, were evaluated. Picrosirius red, Alcian blue and Weigert Van Gieson stainings were performed to evaluate collagen, glycosamynoglycans and elastic fibers. Immunohistochemistry analyses were carried out to assess collagen I, collagen III and hyaluronan. The percentage area of collagen was significantly higher with aging (p < 0.01 in humans, p < 0.001 in mice), mainly due to an increase in collagen I, with no differences in collagen III (p > 0.05). The percentage area of elastic fibers in the perimysium was significantly lower (p < 0.01) in elderly men, together with a significant decrease in hyaluronan content both in humans and in mice. No significant differences were detected according to gender. The accumulation of collagen I and the lower levels of hyaluronan and elastic fibers with aging could cause a stiffening of the muscles and a reduction of their adaptability.


Persistent Herpes Simplex Virus Type 1 Infection of Enteric Neurons Triggers CD8+ T Cell Response and Gastrointestinal Neuromuscular Dysfunction.

  • Paola Brun‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2021‎

Behind the central nervous system, neurotropic viruses can reach and persist even in the enteric nervous system (ENS), the neuronal network embedded in the gut wall. We recently reported that immediately following orogastric (OG) administration, Herpes simplex virus (HSV)-1 infects murine enteric neurons and recruits mononuclear cells in the myenteric plexus. In the current work, we took those findings a step forward by investigating the persistence of HSV-1 in the ENS and the local adaptive immune responses against HSV-1 that might contribute to neuronal damage in an animal model. Our study demonstrated specific viral RNA transcripts and proteins in the longitudinal muscle layer containing the myenteric plexus (LMMP) up to 10 weeks post HSV-1 infection. CD3+CD8+INFγ+ lymphocytes skewed towards HSV-1 antigens infiltrated the myenteric ganglia starting from the 6th week of infection and persist up to 10 weeks post-OG HSV-1 inoculation. CD3+CD8+ cells isolated from the LMMP of the infected mice recognized HSV-1 antigens expressed by infected enteric neurons. In vivo, infiltrating activated lymphocytes were involved in controlling viral replication and intestinal neuromuscular dysfunction. Indeed, by depleting the CD8+ cells by administering specific monoclonal antibody we observed a partial amelioration of intestinal dysmotility in HSV-1 infected mice but increased expression of viral genes. Our findings demonstrate that HSV-1 persistently infects enteric neurons that in turn express viral antigens, leading them to recruit activated CD3+CD8+ lymphocytes. The T-cell responses toward HSV-1 antigens persistently expressed in enteric neurons can alter the integrity of the ENS predisposing to neuromuscular dysfunction.


Sensitivity of the fasciae to sex hormone levels: Modulation of collagen-I, collagen-III and fibrillin production.

  • Caterina Fede‎ et al.
  • PloS one‎
  • 2019‎

Although it is now recognized that women suffer from myofascial pain to a greater extent than men, and that the muscular fasciae can respond to hormonal stimuli, thanks to the expression of sex hormone receptors, how the fasciae can modify their structure under hormonal stimulation is not clear. In this work, an immunocytochemical analysis of collagen-I, collagen-III and fibrillin were carried out on fibroblasts isolated from human fascia lata after in vitro treatment with various levels of sex hormones β-estradiol and/or relaxin-1, according to the phases of a woman's period (follicular, periovulatory, luteal, post-menopausal phases and pregnancy). This study demonstrates for the first time that fascial cells can modulate the production of some components of the extracellular matrix according to hormone levels, when treated with β-estradiol: collagen-I falls from 6% of positivity in the follicular phase to 1.9 in the periovulatory phase. However, after the addition of relaxin-1 to the cell culture, the production of extracellular matrix decreased and remained at the same level (1.7% of collagen-I, at both follicular and periovulatory levels of hormones). These results confirm the antifibrotic function of relaxin-1, thanks to its ability to reduce matrix synthesis. They are also a first step in our understanding of how some hormonal dysfunctions in women can cause a dysregulation of extracellular matrix production in fasciae.


Contribution of Infrapatellar Fat Pad and Synovial Membrane to Knee Osteoarthritis Pain.

  • Elisa Belluzzi‎ et al.
  • BioMed research international‎
  • 2019‎

Osteoarthritis (OA) is the most common form of joint disease and a major cause of pain and disability in the adult population. Interestingly, there are patients with symptomatic OA displaying pain, while patients with asymptomatic OA that do not experience pain but show radiographic signs of joint damage. Pain is a complex experience integrating sensory, affective, and cognitive processes related to several peripheral and central nociceptive factors besides inflammation. During the last years, the role of infrapatellar fat pad (IFP), other than the synovial membrane, has been investigated as a potential source of pain in OA. Interestingly, new findings suggest that IFP and synovial membrane might act as a functional unit in OA pathogenesis and pain. The present review discuss the role of IFP and synovial membrane in the development of OA, with a particular focus on pain onset and the possible involved mediators that may play a role in OA pathology and pain mechanisms. Inflammation of IFP and synovial membrane may drive peripheral and central sensitization in KOA. Since sensitization is associated with pain severity in knee OA and may potentially contribute to the transition from acute to chronic, persistent pain in knee OA, preventing sensitization would be a potentially effective and novel means of preventing worsening of pain in knee OA.


A2A-D2 Heteromers on Striatal Astrocytes: Biochemical and Biophysical Evidence.

  • Simone Pelassa‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Our previous findings indicate that A2A and D2 receptors are co-expressed on adult rat striatal astrocytes and on the astrocyte processes, and that A2A-D2 receptor⁻receptor interaction can control the release of glutamate from the processes. Functional evidence suggests that the receptor⁻receptor interaction was based on heteromerization of native A2A and D2 receptors at the plasma membrane of striatal astrocyte processes. We here provide biochemical and biophysical evidence confirming that receptor⁻receptor interaction between A2A and D2 receptors at the astrocyte plasma membrane is based on A2A-D2 heteromerization. To our knowledge, this is the first direct demonstration of the ability of native A2A and D2 receptors to heteromerize on glial cells. As striatal astrocytes are recognized to be involved in Parkinson's pathophysiology, the findings that adenosine A2A and dopamine D2 receptors can form A2A-D2 heteromers on the astrocytes in the striatum (and that these heteromers can play roles in the control of the striatal glutamatergic transmission) may shed light on the molecular mechanisms involved in the pathogenesis of the disease.


Expression of leptin and leptin receptor isoforms in the rat and human carotid body.

  • Andrea Porzionato‎ et al.
  • Brain research‎
  • 2011‎

Leptin is known to play a role in the modulation of metabolism and control of breathing acting mainly on central nervous structures, although additional actions on peripheral arterial chemoreceptors have also been suggested in the literature. We therefore examined by means of immunohistochemistry the expression of leptin and leptin receptors in the carotid bodies of rats and humans. Leptin expression and relative expression of leptin receptor isoforms were also studied in rats by real-time PCR. No leptin or leptin receptor immunoreactivities were visible in the type II cells of either series. In rat carotid bodies, diffuse positive stainings for leptin and leptin receptors (both with antibody recognizing all receptor isoforms and antibody specific for Ob-Rb) were observed in type I cells. In human carotid bodies, the mean percentage (±standard error) of leptin immunoreactive type I cells was 39.4%±5.1% and the percentages of leptin receptor immunoreactive type I cells were 57.3%±3.9% with antibody recognizing all receptor isoforms and 33.3%±4.2% with antibody specific for isoform Ob-Rb. Double immunofluorescences with anti-tyrosine hydroxylase (type I cell marker) and anti-glial fibrillary acidic protein (type II cell markers) confirmed the selective location of leptin and Ob-Rb in type I cells. Real-time PCR showed the expression of leptin and Ob-Ra, Ob-Rb, Ob-Rc and Ob-Rf isoform mRNA in the rat carotid body, levels of expression being Ob-Rf>Ob-Rc>>Ob-Ra>>Ob-Rb. Ob-Re mRNA was not detected. The above findings suggest a role of circulating or locally produced leptin in the regulation of chemoreceptor discharge and/or metabolic sensing function, by means of direct action on type I cells.


Morphological Aspects in Ultrasound Visualisation of the Suprascapular Notch Region: A Study Based on a New Four-Step Protocol.

  • Hubert Jezierski‎ et al.
  • Journal of clinical medicine‎
  • 2018‎

Sonographic evaluation of the suprascapular notch (SSN) region is clinically important, because it is the most common location for performing suprascapular nerve block. The aim of the study was to describe the morphology of the SSN region based on ultrasound examination and in accordance with the patients' body mass index (BMI).


Herpes Simplex Virus Type 1 Engages Toll Like Receptor 2 to Recruit Macrophages During Infection of Enteric Neurons.

  • Paola Brun‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Herpes simplex virus type 1 (HSV-1) is a widespread neurotropic pathogen responsible for a range of clinical manifestations. Inflammatory cell infiltrate is a common feature of HSV-1 infections and has been implicated in neurodegeneration. Therefore, viral recognition by innate immune receptors (i.e., TLR2) and the subsequent inflammatory response are now deemed key players in HSV-1 pathogenesis. In this study we infected with HSV-1 the enteric nervous system (ENS) of wild-type (WT) and TLR2 knock-out (TLR2ko) mice to investigate whether and how TLR2 participates in HSV-1 induced neuromuscular dysfunction. Our findings demonstrated viral specific transcripts suggestive of abortive replication in the ENS of both WT and TLR2ko mice. Moreover, HSV-1 triggered TLR2-MyD88 depend signaling in myenteric neurons and induced structural and functional alterations of the ENS. Gastrointestinal dysmotility was, however, less pronounced in TLR2ko as compared with WT mice. Interesting, HSV-1 caused up-regulation of monocyte chemoattractant protein-1 (CCL2) and recruitment of CD11b+ macrophages in the myenteric ganglia of WT but not TLR2ko mice. At the opposite, the myenteric plexuses of TLR2ko mice were surrounded by a dense infiltration of HSV-1 reactive CD3+CD8+INFγ+ lymphocytes. Indeed, depletion CD3+CD8+ cells by means of administration of anti-CD8 monoclonal antibody reduced neuromuscular dysfunction in TLR2ko mice infected with HSV-1. During HSV-1 infection, the engagement of TLR2 mediates production of CCL2 in infected neurons and coordinates macrophage recruitment. Bearing in mind these observations, blockage of TLR2 signaling could provide novel therapeutic strategies to support protective and specific T-cell responses and to improve neuromuscular dysfunction in pathogen-mediated alterations of the ENS.


Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives.

  • Andrea Porzionato‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Tissue engineering and regenerative medicine involve many different artificial and biologic materials, frequently integrated in composite scaffolds, which can be repopulated with various cell types. One of the most promising scaffolds is decellularized allogeneic extracellular matrix (ECM) then recellularized by autologous or stem cells, in order to develop fully personalized clinical approaches. Decellularization protocols have to efficiently remove immunogenic cellular materials, maintaining the nonimmunogenic ECM, which is endowed with specific inductive/differentiating actions due to its architecture and bioactive factors. In the present paper, we review the available literature about the development of grafts from decellularized human tissues/organs. Human tissues may be obtained not only from surgery but also from cadavers, suggesting possible development of Human Tissue BioBanks from body donation programs. Many human tissues/organs have been decellularized for tissue engineering purposes, such as cartilage, bone, skeletal muscle, tendons, adipose tissue, heart, vessels, lung, dental pulp, intestine, liver, pancreas, kidney, gonads, uterus, childbirth products, cornea, and peripheral nerves. In vitro recellularizations have been reported with various cell types and procedures (seeding, injection, and perfusion). Conversely, studies about in vivo behaviour are poorly represented. Actually, the future challenge will be the development of human grafts to be implanted fully restored in all their structural/functional aspects.


Partially oxidized polyvinyl alcohol conduitfor peripheral nerve regeneration.

  • Elena Stocco‎ et al.
  • Scientific reports‎
  • 2018‎

Surgical reconstruction of peripheral nerves injuries with wide substance-loss is still a challenge. Many studies focused on the development of artificial nerve conduits made of synthetic or biological materials but the ideal device has not yet been identified. Here, we manufactured a conduit for peripheral nerve regeneration using a novel biodegradable hydrogel we patented that is oxidized polyvinyl alcohol (OxPVA). Thus, its characteristics were compared with neat polyvinyl alcohol (PVA) and silk-fibroin (SF) conduits, through in vitro and in vivo analysis. Unlike SF, OxPVA and neat PVA scaffolds did not support SH-SY5Y adhesion and proliferation in vitro. After implantation in rat model of sciatic nerve transection, the three conduits sustained the regeneration of the injured nerve filling a gap of 5 mm in 12 weeks. Implanted animals showed a good gait recovery. Morphometric data related to the central portion of the explanted conduit interestingly highlighted a significantly better outcome for OxPVA scaffolds compared to PVA conduits in terms of axon density, also with respect to the autograft group. This study suggests the potential of our novel biomaterial for the development of conduits for clinical use in case of peripheral nerve lesions with substance loss.


Infrapatellar Fat Pad Stem Cells Responsiveness to Microenvironment in Osteoarthritis: From Morphology to Function.

  • Elena Stocco‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2019‎

Recently, infrapatellar fat pad (IFP) has been considered as a source of stem cells for cartilage regeneration in osteoarthritis (OA) due to their ability for differentiation into chondrocytes. However, stressful conditions, like that related to OA, may induce a pathogenic reprograming. The aim of this study was to characterize the structural and functional properties of a new population of stem cells isolated from osteoarthritic infrapatellar fat pad (OA-IFP). Nine OA patients undergoing total knee arthroplasty (TKA) were enrolled in this study [median age = 74 years, interquartile range (IQR) = 78.25-67.7; median body mass index = 29.4 Kg/m2, IQR = 31.7-27.4]. OA-IFP stem cells were isolated and characterized for morphology, stemness, metabolic profile and multi-differentiative potential by transmission electron microscopy, flow cytometric analysis, gene expression study and cytochemistry. OA-IFP stem cells displayed a spindle-like morphology, self-renewal potential and responsiveness (CD44, CD105, VEGFR2, FGFR2, IL1R, and IL6R) to microenvironmental stimuli. Characterized by high grade of stemness (STAT3, NOTCH1, c-Myc, OCT-4, KLF4, and NANOG), the cells showed peculiar immunophenotypic properties (CD73+/CD39+/CD90+/CD105+/CD44-/+/CD45-). The expression of HLA-DR, CD34, Fas and FasL was indicative of a possible phenotypic reprograming induced by inflammation. Moreover, the response to mechanical stimuli together with high expression level of COL1A1 gene, suggested their possible protective response against in vivo mechanical overloading. Conversely, the low expression of CD38/NADase was indicative of their inability to counteract NAD+-mediated OA inflammation. Based on the ultrastructural, immunophenotypic and functional characterization, OA-IFP stem cells were hypothesized to be primed by the pathological environment and to exert incomplete protective activity from OA inflammation.


Two-years of home based functional electrical stimulation recovers epidermis from atrophy and flattening after years of complete Conus-Cauda Syndrome.

  • Giovanna Albertin‎ et al.
  • Medicine‎
  • 2019‎

To evaluate progression of skin atrophy during 8 years of complete Conus-Cauda Syndrome and its recovery after 2 years of surface Functional Electrical Stimulation a cohort study was organized and implemented.Functional assessments, tissue biopsies, and follow-up were performed at the Wilhelminenspital, Vienna, Austria; skin histology and immunohistochemistry at the University of Padova, Italy on 13 spinal cord injury persons suffering up to 10 years of complete conus/cauda syndrome. Skin biopsies (n. 52) of both legs were analyzed before and after 2 years of home-based Functional Electrical Stimulation delivered by large anatomically shaped surface electrodes placed on the skin of the anterior thigh. Using quantitative histology we analyzed: 1. Epidermis atrophy by thickness and by area; 2. Skin flattening by computing papillae per mm and Interdigitation Index of dermal-epidermal junctions; 3. Presence of Langerhans cells.Linear regression analyses show that epidermal atrophy and flattening worsen with increasing years post- spinal cord injury and that 2 years of skin electrostimulation by large anatomically shaped electrodes reverses skin changes (pre-functional Electrical Stimulation vs post-functional Electrical Stimulation: thickness 39%, P < .0001; area 41%, P < .0001; papillae n/mm 35%, P < 0.0014; Interdigitation index 11%, P < 0.018), producing a significant recovery to almost normal levels of epidermis thickness and of dermal papillae, with minor changes of Langerhans cells, despite 2 additional years of complete Conus-Cauda Syndrome.In complete Conus-Cauda Syndrome patients, the well documented beneficial effects of 2 years of surface h-b Functional Electrical Stimulation on strength, bulk, and muscle fiber size of thigh muscles are extended to skin, suggesting that electrical stimulation by anatomically shaped electrodes fixed to the skin is also clinically relevant to counteract atrophy and flattening of the stimulated skin. Mechanisms, pros and cons are discussed.


Infrapatellar Fat Pad Gene Expression and Protein Production in Patients with and without Osteoarthritis.

  • Elisa Belluzzi‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Osteoarthritis (OA) is one of the most common joint disorders. Evidence suggests that the infrapatellar fat pad (IFP) is directly involved in OA pathology. However, a comparison between OA versus non-OA IFP is still missing. Thus, the aim of this study was to compare IFP molecular, adipocytes and extracellular matrix characteristics of patients affected by OA, and patients undergoing anterior cruciate ligament (ACL) reconstruction. We hypothesized that not only inflammation but also changes in adipocytes and extracellular matrix (ECM) composition might be involved in OA pathogenesis. Fifty-three patients were enrolled. IFP biopsies were obtained, evaluating: (a) lymphocytic infiltration and vascularization; (b) adipocytes area and number; (c) adipo-cytokines and extracellular matrix gene expression levels; (d) IL-6 and VEGF protein production; (e) collagen fibers distribution. OA IFP was more inflamed and vascularized compared to ACL IFP. OA IFP adipocytes were larger and numerically lower (1.3-fold) than ACL IFP adipocytes. An increase of gene expression of typical white adipose tissue genes was observed in OA compared to ACL IFP. Collagen-types distribution was different in the OA IFP group compared to controls, possibly explaining the change of the biomechanical characteristics found in OA IFP. Statistical linear models revealed that the adipocyte area correlated with BMI in the OA group. In conclusion, inflammation and fibrotic changes of OA IFP could represent novel therapeutic targets to counteract OA.


Small intestine neuromuscular dysfunction in a mouse model of dextran sulfate sodium-induced ileitis: Involvement of dopaminergic neurotransmission.

  • Silvia Cerantola‎ et al.
  • Life sciences‎
  • 2022‎

Anomalies in dopaminergic machinery have been shown in inflammatory bowel disease (IBD) patients and preclinical models of IBD. Thus, we aimed to evaluate the impact of dextran sodium sulfate (DSS)-induced ileitis on enteric dopaminergic pathways.


Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery.

  • Andrea Porzionato‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits) and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: